3D Scaffolds Fabricated by Microfluidic Device for Rat Cardiomyocytes Observation
References: Ziolkowska, K., Stelmachowska, A., Kwapiszewski, R., Chudy, M., Dybko, A., and Brzozka, Z., Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip, Biosensors & Bioelectronics40 (2013) 68-74.
[2] Salerno, A., Levato, R., Mateos-Timoneda, M. A., Engel, E., Netti, P. A., and Planell, J. A., Modular polylactic acid microparticle-based scaffolds prepared via microfluidic emulsion/solvent displacementnchymal stem cells interaction study, Journal of Biomedical Materials Research Part A101A(2013) 720-732.
[3] He, M., Wang, Z. G., Cao, Y., Zhao, Y. T., Duan, B., Chen, Y., Xu, M., and Zhang, L. N., Construction of Chitin/PVA Composite Hydrogels with Jellyfish Gel-Like Structure and Their Biocompatibility, Biomacromolecules 15(2014) 3358-3365.
[4] Cao, Y., Xiong, D. S., Niu, Y. X., Mei, Y., Yin, Z. W., and Gui, J. C., Compressive Properties and Creep Resistance of a Novel, Porous, Semidegradable Poly(vinyl alcohol)/Poly(lactic-co-glycolic acid) Scaffold for Articular Cartilage Repair, J. Appl. Polym. Sci. (2014) 131.
[5] Singh, D., Nayak, V., and Kumar, A., Proliferation of Myoblast Skeletal Cells on Three-Dimensional Supermacroporous Cryogels, Int. J. Biol. Sci.6(2010) 371-381.
[6] Kim, J., Li, W. W. A., Sands, W., and Mooney, D. J., Effect of Pore Structure of Macroporous Poly(Lactide-co-Glycolide) Scaffolds on the in Vivo Enrichment of Dendritic Cells, ACS Appl. Mater. Interfaces (2014) 8505-8512.
[7] Drury, J. L., and Mooney, D. J., Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials24(2003) 4337-4351.
[8] Menard, C., Pupier, S., Mornet, D., Kitzmann, M., Nargeot, J., and Lory, P., Modulation of L-type calcium channel expression during retinoic acid-induced differentiation of H9C2 cardiac cells, J. Biol. Chem.27(1999) 29063-29070.
[9] Pereira, S. L., Ramalho-Santos, J., Branco, A. F., Sardao, V. A., Oliveira, P. J., and Carvalho, R. A. Metabolic Remodeling During H9c2 Myoblast Differentiation: Relevance for In Vitro Toxicity Studies, Cardiovasc. Toxicol.(2011) 180-190.
[10] Ricotti, L., Polini, A., Genchi, G. G., Ciofani, G., Iandolo, D., Vazao, H., Mattoli, V., Ferreira, L., Menciassi, A., and Pisignano, D. Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds, Biomedical Materials7. (2012)
[11] Chung, K. Y., Mishra, N. C., Wang, C. C., Lin, F. H., and Lin, K. H. Fabricating scaffolds by microfluidics, Biomicrofluidics3. (2009)