Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 31097

Select areas to restrict search in scientific publication database:
A Recommendation to Oncologists for Cancer Treatment by Immunotherapy: Quantitative and Qualitative Analysis
Today, the treatment of cancer, in a relatively short period, with minimum adverse effects is a great concern for oncologists. In this paper, based on a recently used mathematical model for cancer, a guideline has been proposed for the amount and duration of drug doses for cancer treatment by immunotherapy. Dynamically speaking, the mathematical ordinary differential equation (ODE) model of cancer has different equilibrium points; one of them is unstable, which is called the no tumor equilibrium point. In this paper, based on the number of tumor cells an intelligent soft computing controller (a combination of fuzzy logic controller and genetic algorithm), decides regarding the amount and duration of drug doses, to eliminate the tumor cells and stabilize the unstable point in a relatively short time. Two different immunotherapy approaches; active and adoptive, have been studied and presented. It is shown that the rate of decay of tumor cells is faster and the doses of drug are lower in comparison with the result of some other literatures. It is also shown that the period of treatment and the doses of drug in adoptive immunotherapy are significantly less than the active method. A recommendation to oncologists has also been presented.
Digital Object Identifier (DOI):


[1] Araujo, R.P. and McElwain, D.S., 2004. A history of the study of solid tumour growth: the contribution of mathematical modelling. Bulletin of mathematical biology, 66(5), pp.1039-1091.
[2] Enderling, H., Chaplain, M.A., Anderson, A.R. and Vaidya, J.S., 2007. A mathematical model of breast cancer development, local treatment and recurrence. Journal of theoretical biology, 246(2), pp.245- 259.
[3] Sachs, R.K., Hlatky, L.R. and Hahnfeldt, P., 2001. Simple ODE models of tumor growth and anti- angiogenic or radiation treatment. Mathematical and Computer Modelling, 33(12-13), pp.1297-1305.
[4] Anderson, A.R., Chaplain, M.A., Newman, E.L., Steele, R.J. and Thompson, A.M., 2000. Mathematical modelling of tumour invasion and metastasis. Computational and Mathematical Methods in Medicine, 2(2), pp.129-154.
[5] Swanson, K.R., Bridge, C., Murray, J.D. and Alvord, E.C., 2003. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. Journal of the neurological sciences, 216(1), pp.1-10.
[6] Szymańska, Z., 2003. Analysis of immunotherapy models in the context of cancer dynamics. International Journal of Applied Mathematics and Computer Science, 13(3), pp.407-418.
[7] O'Byrne, K.J., Dalgleish, A.G., Browning, M.J., Steward, W.P. and Harris, A.L., 2000. The relationship between angiogenesis and the immune response in carcinogenesis and the progression of malignant disease. European journal of cancer, 36(2), pp.151-169.
[8] Stewart, T.H., 1996. Immune Mechanisms and Tumor Dormancy. Revista Medicina, 56(1), p.
[9] Restifo, N.P., Dudley, M.E. and Rosenberg, S.A., 2012. Adoptive immunotherapy for cancer: harnessing the T cell response. Nature Reviews Immunology, 12(4), p.269.
[10] de Pillis, L.G., Gu, W. and Radunskaya, A.E., 2006. Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. Journal of theoretical biology, 238(4), pp.841-862.
[11] Pena-Reyes, C.A. and Sipper, M., 1999. A fuzzy-genetic approach to breast cancer diagnosis. Artificial intelligence in medicine, 17(2), pp.131-155.
[12] Swierniak, A., Kimmel, M. and Smieja, J., 2009. Mathematical modeling as a tool for planning anticancer therapy. European journal of pharmacology, 625(1-3), pp.108-121.
[13] Itik, M., Salamci, M.U. and Banks, S.P., 2010. SDRE optimal control of drug administration in cancer treatment. Turkish Journal of Electrical Engineering & Computer Sciences, 18(5), pp.715- 730.
[14] Burden, T.N., Ernstberger, J. and Fister, K.R., 2004. Optimal control applied to immunotherapy. Discrete and Continuous Dynamical Systems Series B, 4(1), pp.135-146.
[15] Ghaffari, A. and Naserifar, N., 2010. Optimal therapeutic protocols in cancer immunotherapy. Computers in biology and medicine, 40(3), pp.261-270.
[16] Vignard, V., Lemercier, B., Lim, A., Pandolfino, M.C., Guilloux, Y., Khammari, A., Rabu, C., Echasserieau, K., Lang, F., Gougeon, M.L. and Dreno, B., 2005. Adoptive transfer of tumor- reactive Melan-Aspecific CTL clones in melanoma patients is followed by increased frequencies of additional Melan-A-specific T cells. The Journal of Immunology, 175(7), pp.4797-4805.
Vol:15 No:02 2021Vol:15 No:01 2021
Vol:14 No:12 2020Vol:14 No:11 2020Vol:14 No:10 2020Vol:14 No:09 2020Vol:14 No:08 2020Vol:14 No:07 2020Vol:14 No:06 2020Vol:14 No:05 2020Vol:14 No:04 2020Vol:14 No:03 2020Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007