A Systematic Literature Review on Changing Customer Requirements for Sustainable Design over Time
References:
[1] Belmane, I., Karaliunaite, I., Moora, H., Uselyte, R., Viss, V., 2003. Eco-design in the Baltic States' Industry: Feasibility Study. Nordic Council of Ministries, Copenhagen.
[2] Biju, P., Shalij, P., Prabhushankar, G., 2015. Evaluation of customer requirements and sustainability requirements through the application of fuzzy analytic hierarchy process. Journal of Cleaner Production 108, 808-817.
[3] Bonvoisin, J., Lelah, A., Mathieux, F., Brissaud, D., 2014. An integrated method for environmental assessment and ecodesign of ICT-based optimization services. J. Clean. Prod. 68, 144-154.
[4] Boztepe, A., 2012. Green Marketing and Its Impact on Consumer Buying Behavior. European Journal of Economic and Political Studies ejeps -5. 1.
[5] Brown, M., 1996. Environmental policy in the hotel sector: ‘‘green’’ strategy or stratagem. International Journal of Contemporary Hospitality Management 8 (3), 18–23.
[6] Brundtland. G., 1987. World commission on environment and development, our common future. Oxford University Press Oxford/New York, pp. 8–9.
[7] Buckow, K., Quade, M., Rienhoff, O., Nussbeck. S., 2016. Changing requirements and resulting needs for IT-infrastructure for longitudinal research in the neurosciences Neuroscience Research 102, 22–28.
[8] Busse, D., Dalal, B., Blevis, E., Fore, D., Howard, C., Lee L., 2009. Designing for a Sustainable Future. ACM 978-1-60558-403-4/09/10.
[9] Chang, A., Tsai A., 2015. Sustainable design indicators: Roadway project as an example. Ecological Indicators 53, 137–143.
[10] Chen, C., Tsai, D., 2007. How destination image and evaluative factors affect behavioral intentions? Tourism Management 28 (4), 1115–1122.
[11] Chen, D., Schudeleit, T., Posselt, G., Thiede, S., 2013. A state-of-the-art review and evaluation of tools for factory sustainability assessment. Proc. CIRP 9, 85-90.
[12] Chen, L., Li, S., Mo. Z., 2011. Sustainable design principles and methods for product development. IEEE 18th International Conference on Industrial Engineering and Engineering Management.
[13] Chertow, M., 2001. The IPAT Equation and Its Variants: Changing Views of Technology and Environmental Impact. J. Ind. Ecol., 4, 1, pp. 13–29.
[14] Chitchyan, R., Becker, C., Betz, S., Duboc, L., Penzenstadler, B., Seyff, N., Venters C., 2016. Sustainability Design in Requirements Engineering: Stateof Practice. ACM 38th IEEE International Conference on Software Engineering Companion.
[15] Choi, K., Nies, L., Ramani, K., 2008. A Framework for the Integration of Environmental and Business Aspects Toward Sustainable Product Development. J. Eng. Design, 19_5_, pp. 431–446.
[16] Colvin, J., Blackmore, C., Chimbuya, S., Collins, K., Dent, M., Goss, J., Ison, R., Roggero, P., Seddaiu G., 2013. In search of systemic innovation for sustainable development: A design praxis emerging from a decade of social learning inquiry. Research Policy 43. 760–771.
[17] Cor, E., Zwolinski. P., 2014. A procedure to define the best design intervention strategy on a product for a sustainable behavior of the user, Procedia CIRP 15, 425 – 430.
[18] Corsano, G., Vecchietti, A., Montagna, J., 2011. Optimal design for sustainable bioethanol supply chain considering detailed plant performance model. Computers and Chemical Engineering 35, 1384– 1398.
[19] Costa, G.J., Gouvinhas, R.P., 2002. The utilisation of ecodesign practises within Brazilian SME companies. In: 7th International towards Sustainable Product Design Conference Proceedings, Chiswick, the United Kingdom.
[20] Cross N., 2000. Engineering design methods: strategies for product design, vol. 58. Wiley Chichester.
[21] Crul, M., 2003. Ecodesign in Central America (PhD thesis). Delft University of Technology, Delft, the Netherlands.
[22] Curran, M., 2006, “Life Cycle Assessment: Principles and Practice,” Paper No. EPA/600/R-06/060, Washington DC.
[23] Dhillon. B., 1998. Advanced design concepts for engineers. CRC Press.
[24] Durif, F., Boivin, C., Julien C., 2010. In search of a green product definition. Innovative Marketing, Volume 6, Issue 1.
[25] Dym, C., Little, P., Orwin, E., Spjut, R., 2004. Engineering design: A project based introduction. Wiley New York.
[26] Fargnoli, M., De Minicis, M., Tronci, M., 2014. Design Management for Sustainability: An integrated approach for the development of sustainable products. Journal of Engineering and Technology Management 34, 29–45.
[27] Farias, F., 2013. Contemporary Strategies for Sustainable Design. PhD Dissertation. Texas A&M University.
[28] Firman, M., Hassan, C., Sulaiman, C., Mahmud, N., Mokhtar, S., Khairulzan, Y., 2012. “Eco-costs per Value Ratio Assessment of Construction Waste: A Study in Klang Valley, Malaysia.” Journal of Environmental Research and Development 7 (1): 99–106.
[29] Formentini, M., Taticchi, P., 2016. Corporate sustainability approaches and governance mechanisms in sustainable supply chain management. Journal of Cleaner Production 112. 1920-1933.
[30] Gaha, R., Yannou, B., Benamara, A., 2014. A new eco-design approach on CAD systems. Int. J. Precis. Eng. Manuf. 15, 1443-1451.
[31] Gaziulusoy, A., Boyle, C., McDowall, R., 2013. System innovation for sustainability: a systemic double-flow scenario method for companies Journal of Cleaner Production 45. 104-116.
[32] Ghadimi, P., Azadnia, A.H., Yusof, N.H., Saman, M.Z.M., 2012. A weighted fuzzy approach for product sustainability assessment: a case study in automotive industry. J. Clean. Prod. 33, 10-21.
[33] Griese, H., Stobbe, L., Reichl, H., SteveIs, A., 2005. Eco-Design and Beyond - Key Requirements for a Global Sustainable Development. 0-7803-8806, IEEE.
[34] Grober U., 2007. Deep roots — A conceptual history of "sustainable development" (Nachhaltigkeit), Wissenschaftszentrum Berlin für Sozialforschung,
[35] Gungor, Z., Evans S., 2015. Eco-effective changeovers; changing a burden into a manufacturing capability. Procedia CIRP 26, 527 – 532.
[36] Guy S., 2011. Designing fluid futures: Hybrid transitions to sustainable Architectures. Environmental Innovation and Societal Transitions (1) 140–145.
[37] Hanes, R., 2015. Multidisciplinary modeling for sustainable engineering design and assessment. PhD Dissertation. The Ohio State University.
[38] Harper, S., Thurston, D., 2008. Incorporating Environmental Impacts in Strategic Redesign of an Engineered System. ASME J. Mech. Des., 130, 3, p. 031101.
[39] Hashim, A., Dawal. S., 2012. Kano Model and QFD integration approach for Ergonomic Design Improvement. International Conference on Business Innovation and Technology Management. Procedia - Social and Behavioral Sciences 57, 22 – 32.
[40] Hassan, M., Saman, M., Sharif, S., Omar, B., 2012. An integrated MA-AHP approach for selecting the highest sustainability index of a new product. Proc. Soc. Behav. Sci. 57, 236-242.
[41] Hayles. C., 2015. Environmentally sustainable interior design: A snapshot of current supply of and demand for green, sustainable or Fair Trade products for interior design practice. International Journal of Sustainable Built Environment (4) 100–108.
[42] Hosseinpour. A., 2013. Integration of Axiomatic Design with Quality Function Deployment for Sustainable Modular Product Design. Master thesis. University of Manitoba.
[43] Inayat, I., Salim, S., Marczak, S., Daneva, M., Shamshirband, S., 2014. A systematic literature review on agile requirements engineering practices and challenges.
[44] Irvine, K., Weigelhofer, G., Popescu, I., Pfeiffer, E., Păun, A., Drobot, R., Gettel, G., Staska, B., Stanica, A., Hein, T., Habersack h., 2016. Educating for action: Aligning skills with policies for sustainable development in the Danube river basin. Science of the Total Environment (543) 765–777.
[45] Jagadish, Ray A., 2014. Cutting Fluid Selection for Sustainable Design for Manufacturing: An Integrated Theory. Procedia Materials Science 6, 450 – 459.
[46] Janes, A., Remencius, T., Sillitti, A., Succi G., 2013. Managing changes in requirements: an empirical investigation. Journal of software: evolution and process. 2013; 25:1273–1283.
[47] Jin, J., Ji, P., Gu R., 2016. Identifying comparative customer requirements from product online reviews for competitor analysis. Engineering Applications of Artificial Intelligence 49, 61–73.
[48] Kalafatis, S., Pollard, M., East, R., Tsogas, M.H., 1999. Green marketing and Ajzen’s theory of planned behavior: a cross-market examination. Journal of Consumer Marketing 16 (5), 441–460.
[49] Kimita, K., Shimomura, Y., Arai. T., 2009. A customer value model for sustainable service design. CIRP Journal of Manufacturing Science and Technology 1, 254–261.
[50] Kondoh, S., Komoto, H., Kishita, Y., Fukushige, S., 2014. Toward a sustainable business design: a survey. Procedia CIRP 15, 367 – 372.
[51] Kong, W., Harun, A., Sulong, R., Lily, J., 2014. The Influence of Consumers Perception of Green Products on Green Purchase Intention, International Journal of Asian Social Science, 4(8): 924-939.
[52] Küçüksayraç. E., 2015. Design for sustainability in companies: strategies, drivers and needs of Turkey's best performing businesses. Journal of Cleaner Production 106, 455-465.
[53] Tukker, A., Haag, E., Eder, P., 2000. Eco-design: European State of the Art - Part I: Comparative Analysis and Conclusions. European Commission - JRC Institute Prospective Technological Studies, Brussels.
[54] Kulatunga, K., Karunatilake, N., Weerasinghe, N., Ihalawatta, R., 2015. Sustainable Manufacturing based Decision Support model for Product Design and Development Process. Procedia CIRP 26, 87 – 92.
[55] Lakhtakia, A., 2010. Sustainability research and sustainable research. Journal of Nano photonics, Vol. 4, 049901.
[56] Laroche, M., Bergeron, J., Barbaro-Forleo, G., 2001. Targeting consumers who are willing to pay more for environmentally friendly products. Journal of Consumer Marketing 18 (6), 503–520.
[57] Lin, C., Amy, H., Kang H., 2013. An Integrated New Product Development Framework – An Application on Green and Low-carbon Products. International Journal of Systems Science May: 1–21.
[58] Lueg, R., Radlach R., 2016. Managing sustainable development with management control systems: A literature review. European Management Journal 34, 158e171.
[59] Mokhtar, S., Deng Y., 2014. Sustainable Design in Event Design: Opportunities and Limitations. Journal of Clean Energy Technologies, Vol. 2, No. 2.
[60] Mont, O., 2002. Clarifying the concept of product–service system. Journal of Cleaner Production 10, 237–245.
[61] Morioka, S., Carvalho, M., 2016. A systematic literature review towards a conceptual framework for integrating sustainability performance into business. Journal of Cleaner Production. Pp.1-13.
[62] Morris J., 2011. Rebirth Analysis for Sustainable Design: A Theory, Method, and Tool. PhD thesis. Rensselaer Polytechnic Institute.
[63] Murto, P., Person, O., Ahola M., 2014. Shaping the face of environmentally sustainable products: image boards and early consumer involvement in ship interior design. Journal of Cleaner Production (75) 86-95.
[64] Papalambros, P., 2009. Who Cares for Planet Earth? ASME J. Mech. Des., 131_2_, p. 020201.
[65] Pugh, S., 1991. Total design: integrated methods for successful product engineering. Addison-Wesley Wokingham.
[66] Pusporini, P., Abhary, K., Luong, L., 2013. Integrating Environmental Requirements into Quality Function Deployment for Designing Eco-Friendly Product. International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 1.
[67] Raharjo, H., Xie, M., Brombacher, A., 2011. A systematic methodology to deal with the dynamics of customer needs in Quality Function Deployment. Expert Systems with Applications 38, 3653–3662.
[68] Raharjo, H., Xie, M., Goh, T., Brombacher, A., 2007. A methodology to improve higher education quality using the quality function deployment and analytic hierarchy process. Total Quality Management and Business Excellence, 18(10), 1097–1115.
[69] Riel, A., Lelah, A., Mandil, G., Rio, M., Tichkiewitch, S., Zhang, F., Zwolinski, P., 2015. An innovative approach to teaching sustainable design and management. Procedia CIRP (36) 29 – 34.
[70] Roberts, J., 1996. Green consumers in the 1990s: profile and implications for advertising. Journal of Business Research 36, 217–231.
[71] Romli, A., Prickett, P., Setchi, R., Soe, S., 2015. Integrated eco-design decision-making for sustainable product development. International Journal of Production Research, Vol. 53, No. 2, 549–571.
[72] Sauvé, S., Bernard, S., Sloan, P., 2016. Environmental sciences, sustainable development and circular economy: Alternative concepts for trans-disciplinary research. Environmental Development 17 (2016) 48–56.
[73] Schuh, G., Schiffer, M., Arnoscht, J., 2012. Scenario Based Development of Robust Product Architectures. 2012 Proceedings of PICMET '12: Technology Management for Emerging Technologies.
[74] Schuh, G., Arnoscht, J., Völker, M., 2012. Product Design Leverage on the Changeability of Production Systems. CIRP Conference on Manufacturing Systems Procedia CIRP 3, 305 – 310.
[75] Shove, E., Pantzar, M., Watson, M. 2012. The Dynamics of Social Practice. Everyday Life and How It Changes. London: Sage, 2012. 191 p.
[76] Skerlos, S., 2015. Promoting effectiveness in sustainable design. Procedia CIRP 29, 13 – 18.
[77] Stock, T., Seliger, G., 2016. Opportunities of Sustainable Manufacturing in Industry 4.0. Procedia CIRP 40. 536 – 541.
[78] Strömberg, H., Rexfelt, O., Karlsson, I., Sochor. J., 2015. Trying on change – Trialability as a change moderator for sustainable travel behavior. Travel Behaviour and Society 4, 60–68.
[79] Tan, F., Lu Z., 20116. Assessing regional sustainable development through an integration of nonlinear principal component analysis and Gram Schmidt orthogonalization. Ecological Indicators 63, 71–81.
[80] Van Hemel, C., 1998. Ecodesign Empirically Explored: Design for Environment in Dutch Small and Medium-sized Enterprises (PhD thesis). Delft University of Technology, Delft, The Netherlands.
[81] Van Hemel, C., Cramer, J., 2002. Barriers and stimuli for ecodesign in SMEs. J. Clean. Prod. 10, 439e453.
[82] Verhulst, E. 2012. The human side of sustainable design implementation from the perspective of change management. Antwerpen University.
[83] Varsei, S. Polyakovskiy, 2015. Sustainable supply chain networked sign: Acase of the wine industry in Australia M.omega.11.009.
[84] Vezzoli, C., Ceschin, F., Diehl, J., Kohtala, C., 2015. New design challenges to widely implement ‘Sustainable Producte Service Systems. Journal of Cleaner Production 97, 1-12.
[85] Wakkary, R., Desjardins, A., Hauser, S., Maestri, L., 2013. A Sustainable Design Fiction: Green Practices. ACM Transactions on Computer-Human Interaction, Vol. 20, No. 4, Article 23.
[86] Wang, M., Kuo, T., Liu, J., 2009. Identifying target green 3C customers in Taiwan using multiattribute utility theory. Expert Systems with Applications (36) pp.12562–12569.
[87] Wang, S. Chang, S., Williams, P., Koo, B., Qu. Y., 2015. Using Balanced Scorecard for Sustainable Designcentered Manufacturing. Procedia Manufacturing. Vol 1, Pages 181–192.
[88] Wang, Y., Tseng, M., 2011. Integrating comprehensive customer requirements into product design. CIRP Annals - Manufacturing Technology 60, 175–178.
[89] White, M., 2013. Sustainability: I know it when I see it. Ecological Economics 86, 213–217.
[90] Wu, Y., Ho, C., 2015. Integration of green quality function deployment and fuzzy theory: a case study on green mobile phone design. Journal of Cleaner Production 108, 271-280.
[91] Younesi, M., Roghanian, E., 2015. A framework for sustainable product design: a hybrid fuzzy approach based on Quality Function Deployment for Environment. Journal of Cleaner Production 108 (2015) 385-394.
[92] Zeid, A., 2015. CAD tools for sustainable design. 978-1-4799-6065-1/15/$31.00.IEEE.
[93] Zink, K., 2014. Designing sustainable work systems: The need for a systems approach. Applied Ergonomics 45, 126e132.