References:
[1] J. A. Gonçalves and R. Henriques, “UAV photogrammetry for topographic monitoring of coastal areas,” ISPRS J. Photogramm. Remote Sens., vol. 104, pp. 101–111, 2015.
[2] J. Roberts, D. Frousheger, B. Williams, D. Campbell, and R. Walker, “How the outback challenge was won,” IEEE Robot. Autom. Mag., vol. 23, no. 4, pp. 54–62, 2016.
[3] R. O. Andrade, “O voo do falcão.” FAPESP, São Paulo, p. v.211, 64-69, 2013.
[4] P. J. Zarco-Tejada, R. Diaz-Varela, V. Angileri, and P. Loudjani, “Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods,” Eur. J. Agron., vol. 55, pp. 89–99, 2014.
[5] J. P. Dash, M. S. Watt, G. D. Pearse, M. Heaphy, and H. S. Dungey, “Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak,” ISPRS J. Photogramm. Remote Sens., vol. 131, pp. 1–14, 2017.
[6] H. Sun, G. Song, Z. Wei, Y. Zhang, and S. Liu, “Bilateral teleoperation of an unmanned aerial vehicle for forest fire detection,” 2017 IEEE Int. Conf. Inf. Autom. ICIA 2017, no. July, pp. 586–591, 2017.
[7] M. R. James, S. Robson, S. D’Oleire-Oltmanns, and U. Niethammer, “Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment,” Geomorphology, vol. 280, pp. 51–66, 2017.
[8] F. C. Nogueira and L. Roberto, “Accuracy analysis of orthomosaic and DSM produced from sensor aboard UAV,” XVIII Simpósio Bras. Sensoriamento Remoto -SBSR, vol. d, no. 2011, pp. 4880–4887, 2017.
[9] F. Agüera-Vega, F. Carvajal-Ramírez, and P. Martínez-Carricondo, “Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle,” Meas. J. Int. Meas. Confed., vol. 98, 2017.
[10] F. Agüera-Vega and F. Carvajal-Ramírez, “Accuracy of Digital Surface Models and Orthophotos Derived from Unmanned Aerial Vehicle Photogrammetry,” J. Surv., vol. 143, no. 2, pp. 1–10, 2016.
[11] J. R. G. Braga, H. F. de C. Velho, G. Conte, P. Doherty, and E. H. Shiguemori, “An Image Matching System for Autonomous UAV Navigation Based on Neural Network,” International Conference on Control, Automation, Robotics & Vision (ICARCV), Phuket, Thailand, p. 6, 2016.
[12] C. F. Lo et al., “The direct georeferencing application and performance analysis of UAV helicopter in GCP-free area,” ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XL-1/W4, no. 1W4, pp. 151–157, Aug. 2015.
[13] S. A. Lima, L. Roberto, E. H. Shiguemori, H. J. H. Kux, and J. L. N. e S. Brito, “Determinação da posição e atitudes de VANT por fotogrametria,” XVIII Simpósio Bras. Sensoriamento Remoto - SBSR, no. 2008, pp. 5392–5399, 2017.
[14] G. Conte and P. Doherty, “a Visual Navigation System for UAS Based on Geo-Referenced Imagery,” ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XXXVIII-1/, no. September, pp. 1–6, 2011.
[15] L. de A. Faria, C. A. de M. Silvestre, and M. A. F. Correia, “GPS-dependent systems: Vulnerabilities to electromagnetic attacks,” J. Aerosp. Technol. Manag., vol. 8, no. 4, pp. 423–430, 2016.
[16] P. F. F. Silva Filho, “Automatic Landmark Recognition in Aerial Images for the Autonomous Navigation System of Unmanned Aerial Vehicles,” Instituto Tecnológico de Aeronautica - ITA, São José dos Campos, 2016.
[17] P. R. Wolf, B. A. Dewitt, and B. E. Wilkinson, Elements of Photogrammetry with Applications in GIS. New York: Mc Graw Hill Education, 2014.
[18] J. C. McGlone and G. Y. G. Lee, Manual of Photogrammetry, Sixth. Bethesda, 2013.
[19] C. D. Ghilani, Adjustament Computations: Spatial Data Analysis. New Jersey: Wily, 2017.
[20] E. M. Mikhail, J. S. Bethel, and J. C. McGlone, Introduction to Modern Photogrammetry. Hobeken: Wiley, 2001.
[21] DECEA/ICA_100-40, Sistemas de Aeronaves Remotamente Pilotadas e o Acesso ao Espaço Aéreo Brasileiro - ICA 100-40. Brasil, 2016, p. 56.