Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 30222


Select areas to restrict search in scientific publication database:
4784
Adaptive Path Planning for Mobile Robot Obstacle Avoidance
Abstract:
Generally speaking, the mobile robot is capable of sensing its surrounding environment, interpreting the sensed information to obtain the knowledge of its location and the environment, planning a real-time trajectory to reach the object. In this process, the issue of obstacle avoidance is a fundamental topic to be challenged. Thus, an adaptive path-planning control scheme is designed without detailed environmental information, large memory size and heavy computation burden in this study for the obstacle avoidance of a mobile robot. In this scheme, the robot can gradually approach its object according to the motion tracking mode, obstacle avoidance mode, self-rotation mode, and robot state selection. The effectiveness of the proposed adaptive path-planning control scheme is verified by numerical simulations of a differential-driving mobile robot under the possible occurrence of obstacle shapes.
Digital Object Identifier (DOI):

References:

[1] T. C. Lee, C. Y. Tsai, and K. T. Song, ¶ÇÇüFast parking control of mobile robots: a motion planning approach with experimental validation,¶ÇÇé IEEE Trans. Contr. Syst. Technol., vol. 12, no. 5, pp. 661¶ÇÇü676, 2004.
[2] T.-H. S. Li, S. J. Chang, and Y. X. Chen, ¶ÇÇüImplementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot,¶ÇÇé IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 867¶ÇÇü880, 2003.
[3] H. Seraji and A. Howard, ¶ÇÇü Behavior-based robot navigation on challenging terrain: a fuzzy logic approach, ¶ÇÇé IEEE Trans. Robot. Automat., vol. 18, no. 3, pp. 308¶ÇÇü321, 2002.
[4] C. L. Hwang, L. J. Chang, and Y. S. Yu, ¶ÇÇüNetwork-based fuzzy decentralized sliding-mode control for car-like mobile robots,¶ÇÇé IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 574¶ÇÇü585, 2007.
[5] W. Tsui, M. S. Masmoudi, F. Karray, I. Song, and M. Masmoudi, ¶ÇÇü Soft-computing-based embedded design of an intelligent wall/lane-following vehicle,¶ÇÇé IEEE/ASME Trans. Mechatronics, vol. 13, no. 1, pp. 125¶ÇÇü135, 2008.
[6] C. Ye, H. C. Yung, and D. Wang, ¶ÇÇüA fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance,¶ÇÇé IEEE Trans. Syst. Man, Cybern. B, vol. 33, no. 1, pp. 17¶ÇÇü27, 2003.
[7] J. H. Lilly, ¶ÇÇüEvolution of a negative-rule fuzzy obstacle avoidance controller for an autonomous vehicle,¶ÇÇé IEEE Trans. Fuzzy Syst., vol. 15, no. 4, pp. 718¶ÇÇü728, 2007.
[8] Q. Li, W. Zhang, Y. Yin, Z. Wang, and G. Liu, ¶ÇÇüAn improved genetic algorithm of optimum path planning for mobile robots,¶ÇÇé Int. Conf. Intelligent Systems Design and Applications, vol. 2, pp. 637¶ÇÇü642, 2006.
[9] J. Tu and S. Yang, ¶ÇÇüGenetic algorithm based path planning for a mobile robot,¶ÇÇé IEEE Int. Conf. Robotics and Automation, pp. 1221¶ÇÇü1226, 2003.
[10] Y. Hu and S. Yang, ¶ÇÇüA knowledge based genetic algorithm for path planning of a mobile robot,¶ÇÇé IEEE Int. Conf. Robotics and Automation, pp. 4350¶ÇÇü4355, 2004.
[11] W. Wu and Q. Ruan, ¶ÇÇüA gene-constrained genetic algorithm for solving shortest path problem,¶ÇÇé Int. Conf. Signal Processing, pp. 2510¶ÇÇü2513, 2004.
[12] J. Borenstein and Y. Koren, ¶ÇÇüThe vector field histogram-fast obstacle avoidance for mobile robots,¶ÇÇé IEEE Trans. Robot. Automat., vol. 7, no. 3, pp. 278¶ÇÇü288, 1991.
[13] A. Zhu and S. X. Yang, ¶ÇÇüNeurofuzzy-based approach to mobile robot navigation in unknown environments,¶ÇÇé IEEE Trans. Syst. Man, Cybern. C, vol. 37, no. 4, pp. 610¶ÇÇü621, 2007.
[14] F. Amigoni and S. Gasparini, ¶ÇÇüBuilding segment-based maps without pose information,¶ÇÇé Proc. IEEE, vol. 94, no. 7, pp. 1340¶ÇÇü1359, 2006.
[15] G. L. Mariottini, G. Oriolo, and D. Prattichizzo, ¶ÇÇüImage-based visual servoing for nonholonomic mobile robots using epipolar genmetry,¶ÇÇé IEEE Trans. Robotics, vol. 23, no. 1, pp. 87¶ÇÇü100, 2007.
[16] M. Wang and J. N. K. Liu, ¶ÇÇü Fuzzy logic-based real-time robot navigation in unknown environment with dead ends, ¶ÇÇé Robot. Autonomous Syst., vol. 56, no. 7, pp. 625¶ÇÇü643, 2008.
[17] J. Velagic, B. Lacevic, and B. Perunicic, ¶ÇÇüA 3-level autonomous mobile robot navigation system designed by using reasoning/search approaches,¶ÇÇé Robot. Autonomous Syst., vol. 54, no. 12, pp. 989¶ÇÇü1004, 2006.
[18] K. M. Krishna and P. K. Kalra, ¶ÇÇüPerception and remembrance of the environment during real-time navigation of a mobile robot,¶ÇÇé Robot. Autonomous Syst., vol. 37, pp. 25¶ÇÇü51, 2001.
[19] M. Wang and J. N. K. Liu, ¶ÇÇüFuzzy logic based robot path planning in unknown environments,¶ÇÇé Int. Conf. Machine Learning and Cybernetics, vol. 2, pp. 813¶ÇÇü818, 2005.
[20] G. Antonelli, S. Chiaverini, and G. Fusco, ¶ÇÇü A fuzzy-logic-based approach for mobile robot path tracking,¶ÇÇé IEEE Trans. Fuzzy Syst., vol. 15, no. 2, pp. 211¶ÇÇü221, 2007.
[21] S. J. Yoo, Y. H. Choi, and J. B. Park, ¶ÇÇüGeneralized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach,¶ÇÇé IEEE Trans. Circuit Syst. I, vol. 53, no. 6, pp. 1381¶ÇÇü1394, 2006.
Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007