All Types of Base Pair Substitutions Induced by γ-Rays in Haploid and Diploid Yeast Cells
References:
[1] A. B. Devin, T. Yu. Prosvirova, V. T. Peshekhonov, O. V. Chepurnaya, M. Ye. Smirnova, N. A. Koltovaya, E. N. Troitskaya, I. P. Arman, “The start gene CDC28 and the genetic stability of yeast”, Yeast, vol. 6, pp. 231-243, 1990.
[2] T.-M. Williams, R. M. Fabbri, J. W. Reeves, G. F. Crouse, “A new reversion assay for measuring all possible base pair substitutions in S. cerevisiae”, Genetics, vol. 170, pp. 1423-1426, 2005.
[3] M. Hampsey, “A tester system for detecting each of the six base-pair substitutions in Saccahromyces cerevisiae by selecting for an essential cysteine in iso-1-cytochrome c”, Genetics, vol. 128, pp. 59-67, 1991.
[4] N. N. Khromov-Borisov, J. Saffi, J. A. P. Henriques, “Perfect order plating: principal and applications”, Technical Tips Online, vol. 6, pp. 51-57, 2001.
[5] R. Mortimer, T. Brustad, D. Cormak, “Influence of linear energy transfer and oxygen tension on the effectiveness of ionizing radiation for induction of mutations and lethality in Saccharomyces cerevisiae”, Radiation Research, vol. 26, pp. 465-482, 1965.
[6] K. A. Lyubimova, S. A. Anikin, N. A. Koltovay, E. A. Krasavin, “Requlariries of the induction of point mutations in the yeast Saccahromyces cerevisiae after exposure to γ-radiation”, Genetika (Rus.), vol. 34, pp. 1228-1232, 1998.
[7] Y. Nakabeppu, K. Sakumi, K. Sakumoto, D. Tsuchimoto, T. Tsuzuki, Y. Nakatsu, “Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids”, Journal of Biological Chemistry, vol. 387, pp. 373-379, 2006.
[8] D. I. Feig, L. A. Loeb, “Mechanism of mutation by oxidative DNA damage: reduced fidelity of mammalian DNA polymerase-β”, Biochemistry, vol. 32, pp. 4466-4473, 1993.
[9] F. Yuan, Y. Zhang, D. Rajpal, X. Wu, D. Guo, M. Wang. J.-S. Taylor, Z. Wang, “Specificity of DNA lesion bypass by the yeast DNA polymerase η”, Journal of Biological Chemistry, vol. 275, pp. 8233-8239, 2000.
[10] J. R. Nelson, C. W. Lawrence, D. C. Hinkle, “Deoxycytidyl transferase activity of yeast REV1 protein”, Nature, vol. 382, pp. 729-731, 1996.
[11] R. E. Johnson, C. A. Torre-Ramos, T. Izumi, S. Mitra, S. Prakash, I. Prakash, “Identification of APN2, the Saccharomyces cerevisiae homolog of the major human AP endonuclease HAP1, and its role in the repair of abasic sites”, Genes Development, vol. 12, pp. 3137-3143, 1998.
[12] J. P. McDonald, A. S. Levin, R. Woodgate, “The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism”, Genetics, vol. 147, pp. 1557-1568, 1997.
[13] A. A. Roush, M. Suarez, E. C. Friedberg, M. Radman, W. Siede, “Deletion of the Saccharomyces cerevisiae gene RAD30 encoding an Escherichia coli DinB homolog confers UV radiation sensitivity and altered mutability”, Molecular and General Genetics, vol. 257, pp. 686-692, 1998.
[14] M. Moriya, “Single-strand shuttle phagemid for mutagenesis studies in mammalian cells: 8-Oxoguanine in DNA induces targeted GC-TA transversions in simian kidney cells”, Proc. Natl. Acad. Sci. USA, vol. 90, pp. 1122-1126, 1993.
[15] W. M. Hick, M. Kim, J. E. Haber, “Increased mutagenesis and unique mutation signature associated with mitotic gene conversion”, Science, vol. 329, pp. 82-85, 2010.
[16] L. H. Burch, Y. Yang, J. F. Sterling, S. A. Roberts, F. G. Chao, H. Xu, L. Zhang, J. Walsh, M. A. Resnick, P. A. Mieczkowski, D. A. Gordenin, “Damage-induced localized hypermutability”, Cell Cycle, vol. 10, pp. 1073-1085, 2011.