An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials
References:
[1] European Environmental Agency, “Economic losses from climate-related extremes,” 2019. https://www.eea.europa.eu/downloads/92dcd5aa70764b63b092ee9ee5777fbb/1519722091/assessment-1.
[2] P. Wallemacq and R. House, “Economic losses, poverty & disasters: 1998-2017,” UNDRR and CRED. p. 31, 2018.
[3] L. Wood, “Global PET Bottle Market Report 2019: Industry Trends, Share, Size, Growth, Opportunity and Forecasts 2011-2018 & 2019-2024,” Research and Markets, 2019. (Online) Available: https://www.globenewswire.com/news-release/2019/02/26/1742189/0/en/Global-PET-Bottle-Market-Report-2019-Industry-Trends-Share-Size-Growth-Opportunity-and-Forecasts-2011-2018-2019-2024.html.
[4] N. Van Chanh, B. D. Trung, and D. Van Tuan, “Recent research geopolymer concrete,” Int. Conf. Asian Concr. Fed., vol. 18, pp. 235–241, 2008.
[5] V. Supraja and M. Kanta Rao, “Experimental study on geopolymer concrete incorporating GGBS,” International Journal of Electronics, Communication & Soft Computing Science and Engineering, vol. 2, no. 2. pp. 11–15, 2011.
[6] C. D. Lawrence, “The production of low-energy cements,” Lea’s Chem. Cem. Concr, pp. 421–470, 2007.
[7] LINGL I. 10011, “Laboratory Report,” 2018.
[8] EN15167-1:2006 Ground granulated blast furnace slag for use in concrete, mortar and grout. Definitions, specifications and conformity criteria.
[9] J. L. Provis and J. S. J. van Deventer, STAR 224-AAM Alkali Activated Materials. 2014.
[10] Ma’aden, “Delivering Results Responsibly, Ma’aden Annual Report,” 2017.
[11] EN 196-6: 2018 “Determination of fineness and density”.
[12] M. Steveson and K. Sagoe-Crentsil, “Relationships between composition, structure and strength of inorganic polymers,” J. Mater. Sci., vol. 40, no. 8, pp. 2023–2036, 2005.
[13] C. A. Strydom and J. C. Swanepoel, “Utilisation of fly ash in a geopolymeric material,” Appl. Geochemistry, vol. 17, no. 8, pp. 1143–1148, 2002.
[14] S. Andini, R. Cioffi, F. Colangelo, T. Grieco, F. Montagnaro, and L. Santoro, “Coal fly ash as raw material for the manufacture of geopolymer-based products,” Waste Manag., vol. 28, no. 2, pp. 416–423, 2008.
[15] Liew, Y. M., Kamarudin, H., Mustafa Al Bakri, A. M., et al., “Optimization of solids-to-liquid and alkali activator ratios of calcined kaolin geopolymeric powder,” Constr. Build. Mater, vol. 37, pp. 440–451, 2012.
[16] D. L. Bish and J. E. Post, Modern powder diffraction, vol. 20. Walter de Gruyter GmbH & Co KG, 2018.
[17] EN 1015-3, “Methods of Test for Mortar for Masonry.” 1999.
[18] G. Li and X. Wu, “Influence of fly ash and its mean particle size on certain engineering properties of cement composite mortars,” Cem. Concr. Res., vol. 35, no. 6, pp. 1128–1134, 2005.
[19] Heah, C. Y., Kamarudin, H., Al Bakri, A. M., Bnhussain, M., Luqman, M., Nizar, I. K. & Liew, Y. M. (2012) ‘Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers’, Construction and Building Materials. Elsevier Ltd, 35, pp. 912–922. doi: 10.1016/j.conbuildmat.2012.04.102.
[20] Y. M. Liew, C. Y. Heah, A. B. Mohd Mustafa, and H. Kamarudin, “Structure and properties of clay-based geopolymer cements: A review,” Prog. Mater. Sci., vol. 83, pp. 595–629, 2016.
[21] X. Feng and B. Clark, “Evaluation of the physical and chemical properties of fly ash products for use in Portland cement concrete,” World Coal Ash Conf., pp. 1–8, 2011.
[22] Lee, S., Seo, M. D., Kim, Y. J., Park, H. H., Kim, T. N., Hwang, Y., & Cho, S. B. “Unburned carbon removal effect on compressive strength development in a honeycomb briquette ash-based geopolymer,” Int. J. Miner. Process. vol. 97, no. 1–4, pp. 20–25, 2010.
[23] A. Fernandez-Jimenez and A. Palomo, “Characterisation of fly ashes. Potential reactivity as alkaline cements,” Fuel, vol. 82, pp. 2259–2265, 2003.
[24] Adam, A. “Strength and Durability Properties of Alkali Activated Slag and Fly Ash-Based Geopolymer Concrete,” Chemical Engineering, no. August. p. 219, 2009.
[25] Diaz, E. I., E. N. Allouche, and Sven Eklund, “Factors affecting the suitability of fly ash as source material for geopolymers,” Fuel, vol. 89, no. 5, pp. 992–996, 2010.
[26] L. M. Keyte, “Fly ash glass chemistry and inorganic polymer cements,” in Geopolymers, Elsevier, 2009, pp. 15–36.
[27] Liew, Y. M., Kamarudin, H., Mustafa Al Bakri, A. M., et al. (2012b) ‘Optimization of solids-to-liquid and alkali activator ratios of calcined kaolin geopolymeric powder’, Construction and Building Materials. Elsevier Ltd, 37, pp. 440–451. doi: 10.1016/j.conbuildmat.2012.07.075.
[28] J. Davidovits, “Geopolymers: inorganic polymeric new materials,” J. Therm. Anal., vol. 37, no. 8, pp. 1633–1656, 1991.
[29] Ha, T. H., Muralidharan, S., Bae, J. H., Ha, Y. C., Lee, H. G., Park, K. W., & Kim, D. K. “Effect of unburnt carbon on the corrosion performance of fly ash cement mortar,” Constr. Build. Mater. vol. 19, no. 7, pp. 509–515, 2005.
[30] EN 196-2: 2018 “Determination of fineness and density”.
[31] M. E. Nordberg, “Chemical Durability.” Corning Glass Works Library: 13pp, 1964.
[32] M. Criado, A. Palomo, and A. Fernández-Jiménez, “Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products,” Fuel, vol. 84, no. 16, pp. 2048–2054, 2005.
[33] Fernández-Jimenez A.; Palomo A.; Alonso M. M.; De La Torre A. G.; López-Olmo G.; Aranda M. A.G. (2006) “Quantitative determination of phases in the alkali activation of fly ash. Part I”. Potential ash reactivity, Fuel, Vol: 85, Issue: 5, 625-634. DOI10.1016/j.fuel.2005.08.014.
[34] W. K. W. Lee and J. S. J. Van Deventer, “Structural reorganisation of class F fly ash in alkaline silicate solutions,” Colloids Surfaces a Physicochem. Eng. Asp, vol. 211, no. 1, pp. 49–66, 2002.
[35] R. Walker and S. Pavía, Physical properties and reactivity of pozzolans, and their influence on the properties of lime pozzolan pastes, Materials and Structures, 44, 2011, 1139 1150.
[36] T. Peters and R. Iberg, “Mineralogical changes during firing of calcium-rich brick clays,” Ceram. Bull., vol. 57, no. 5, pp. 503–509, 1978.
[37] Grapes R. (2006) Pyrometamorphism. Elsevier.
[38] M. Maggetti, “Phase analysis and its significance for technology and origin,” in Archaeological ceramics, 1982, pp. 121–133.
[39] R. A. Sayanam, A. K. Kalsotra, S. K. Mehta, R. S. Singh, and G. Mandal, “Studies on thermal transformations and pozzolanic activities of clay from Jammu region (India),” J. Therm. Anal., vol. 35, no. 1, pp. 99–106, 1989.
[40] I. Garcia-Lodeiro, A. Palomo, and A. Fernández-Jiménez, “An overview of the chemistry of alkali-activated cement-based binders,” in Handbook of alkali-activated cements, mortars and concretes, Elsevier, 2015, pp. 19–47.
[41] EN 197-1: 2011 “Cement. Composition, specifications and conformity criteria for common cements”.
[42] EN 450-1: 2012 Fly ash for concrete.
[43] P. V Krivenko, “Fly ash-alkali cements and concretes,” in Proceed. 4th CANMET-ACI Intern. Conf. on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Istanbul, 1992, pp. 721–734.
[44] Komljenović M. (2015), “Mechanical strength and Young's modulus of alkali-activated cement-based binders”. In: Handbook of alkali- activated Cements, mortars and concretes. Ed by F. Pacheco-Torgal, J.A. Labrincha, C. Leonelli, A. Palomo and P. Chindaprasirt. Woodhead Publishing Series in Civil and Structural Engineering. No 54. Elsevier. UK. 171-215.
[45] Pers. comm J. Reddy, Ecocem, Jan 2010.