An Optimized Method for 3D Magnetic Navigation of Nanoparticles inside Human Arteries
References:
[1] Q. Pankhurst, J. Connolly, S. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys., vol. 36, no. 13, pp. 167–181, 2003.
[2] M. Ramezanpour, S.S.W. Leung, K.H. Delgado-Magnero, B.Y.M. Bashe, J. Thewalt, D.P. Tieleman, Computational and experimental approaches for investigating nanoparticle-based drug delivery systems, Biochim. Biophys. Acta, vol. 1858, pp. 1688–1709, 2016.
[3] V.P. Podduturi, I.B. Magana, D.P. O’Neal, P.A. Derosa, Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect, Com put. Methods Programs Biomed., vol. 112, pp. 58–68, 2013.
[4] J. Llandro, J.J. Palfreyman, A. Ionescu, C.H.W. Barnes, Magnetic biosensor technologies for medical applications: a review, Med. Biol. Eng. Comput., vol. 48, pp. 977–998, 2010.
[5] P. Babinec, A. Krafcik, M. Babincova, J. Rosenecker, Dynamics of magnetic particles in cylindrical halbach array: implications for magnetic cell separation and drug targeting, Med. Biol. Eng. Comput., vol. 48, pp. 745–753, 2010.
[6] D.H. Nquyen, J.S. Lee, J.H. Choi, K.M. Park, Y. Lee, K.D. Park, Hierarchical self-assembly of magnetic nanoclusters for theranostics: tunable size, enhanced magnetic resonance imagability, and controlled and targeted drug delivery, Acta Biometerialia, vol. 35, pp. 109–117, 2016.
[7] K. Widder, P. Marino, R. Morris, A. Senyei, Targeted Drugs, Wiley, New York, 1983.
[8] H.G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys., vol. 12, no. 6, pp. 620–631, 2010.
[9] P. Kennedy and R. Zheng, Flow Analysis of Injection Molds: Hanser, 2013.
[10] E.G. Karvelas, N.K. Lampropoulos, I.E. Sarris, A numerical model for aggregations formation and magnetic driving of spherical particles based on OpenFOAM, Comp. Methods Progr. Biomed., vol. 142, pp. 21–30, 2017.
[11] E.G. Karvelas, T.E. Karakasidis, I.E.Sarris, Computational analysis of paramagnetic spherical Fe3O4 nanoparticles under permanent magnetic fields, Comput. Mat. Sci., vol. 154, pp. 464-471, 2018.
[12] E.G. Karvelas, N.K. Lampropoulos, L. Benos, T.E. Karakasidis, I.E. Sarris, On the magnetic aggregation of Fe3O4 nanoparticles, Comp. Methods Progr. Biomed., DOI: 10.1016/j.cmpb.2020.105778
[13] B.K. Bharadvaj, R.F. Mabon, D.P. Giddens, Steady flow in a model of a human carotid bifurcation. part 1-Flow visualization. J. Biomech. vol. 15, pp. 349–362, 1982.
[14] N. Hansen, The CMA evolution strategy; a comparing review, Adv. Estim. Distrib. Algorithms, vol. 192, pp. 1769–1776, 2006.
[15] N.K. Lampropoulos, E.G. Karvelas, D.I. Papadimitriou, I.E. Sarris, Computational study of the optimum gradient magnetic field for the navigation of spherical particles into targeted areas, Journal of Physics: Conference Series vol. 637, no. 1, pp. 012038, 2015.
[16] N.K. Lampropoulos, E.G. Karvelas, T.E. Karakasidis, I.E. Sarris, Computational Study of the Optimum Gradient Magnetic Field for the Navigation of the Spherical Particles in the Process of Cleaning the Water from Heavy Metals, Procedia Engineering, vol. 162, pp. 77-82, 2016.
[17] N.K. Lampropoulos, E.G. Karvelas, D.I. Papadimitriou, T.E. Karakasidis, I.E. Sarris, Computational study of the effect of gradient magnetic field in navigation of spherical particles, Journal of Physics: Conference Series, vol. 931, no. 1, pp. 012014, 2017.