Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings
References:
[1] Basseville, M., Nikiforov, I. V., et al. (1993). Detection of abrupt changes:
theory and application, volume 104. Prentice Hall Englewood Cliffs.
[2] Basseville, M. (1988). Detecting changes in signals and systems: a survey.
Automatica, 24, 309-326.
[3] Berkhin, P. (2006). A survey of clustering data mining techniques. In
Grouping multidimensional data (pp. 25-71). Springer, Berlin, Heidelberg.
[4] Chen, J., & Gupta, A. K. (2012). Parametric statistical change point
analysis: With applications to genetics, medicine, and finance. Basel,
Switzerland: Springer Science+Business Media, LLC.
[5] Giap, Q.-H., Ploix, S., and Flaus, J.-M. (2009). Managing Diagnosis
Processes with Interactive Decompositions. Milan, Italy.
[6] Greiner, R., Smith, B. A., and Wilkerson, R. W. (1989). A correction to
the algorithm in reiter’s theory of diagnosis. Artificial Intelligence, 41(1),
79-88.
[7] Guannan Li, Yunpeng Hu, Huanxin Chen, Haorong Li, Min Hu, Yabin
Guo, Shubiao Shi, Wenju Hu (2016). A Sensor Fault Detection and
Diagnosis Strategy for Screw Chiller System Using Support Vector Data
Description-based D-statistic and DV-contribution plots. Energy and
Buildings.
[8] Llanos, C. E., Sanchéz, M. C., & Maronna, R. A. (2017). A robust
methodology for the sensor fault detection and classification of systematic
observation errors. In Computer Aided Chemical Engineering (Vol. 40,
pp. 1525-1530). Elsevier.
[9] Li, G., & Hu, Y. (2018). Improved sensor fault detection, diagnosis and
estimation for screw chillers using density-based clustering and principal
component analysis. Energy and Buildings.
[10] Ni, K., Ramanathan, N., Chehade, M. N. H., Balzano, L., Nair, S.,
Zahedi, S., ... & Srivastava, M. (2009). Sensor network data fault types.
ACM Transactions on Sensor Networks (TOSN), 5(3), 25.
[11] Pomorski, D., Perche, P., (2001). Inductive learning of decision trees:
application to fault isolation of an induction motor. Eng. Appl. Artif.
Intell. 14, 155-166 .
[12] Ploix, S. (2009). Des systèmes automatisés aux systémes coopérants
application. au diagnostic et à la gestion énergétique.
[13] Ren, J. Y., Chen, C. Z., He, B., & Wang, B. (2008). Application of
SiC and SiC/Al to TMA optical remote sensor. Optics and Precision
Engineering, 16(12), 2537-2543.
[14] Shi, L., Cheng, P., & Chen, J. (2011). Sensor data scheduling for optimal
state estimation with communication energy constraint. Automatica,
47(8), 1693-1698.
[15] Upadhyaya, S.K., Rand, R.H. and Cooke, J.R., 1983. A mathematical
model of the effects of CO 2 on stomatal dynamics. J. Theor. Biol., 101:
415-440.
[16] Zhang, R., Peng, Z., Wu, L., Yao, B., & Guan, Y. (2017). Fault diagnosis
from raw sensor data using deep neural networks considering temporal
coherence. Sensors, 17(3), 549.
[17] Zhang, Y., Meratnia, N., & Havinga, P. J. (2010). Outlier detection
techniques for wireless sensor networks: A survey. IEEE Communications
Surveys and Tutorials, 12(2), 159-170.