Bibliometric Analysis of the Research Progress on Graphene Inks from 2008 to 2018
References:
[1] O. C. Compton, S. T. Nguyen, "Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials", Small, vol. 6, pp. 711-723, 2010.
[2] A. K. Geim, K. S. Novoselov, "The rise of graphene", Nat Mater, vol. 6, pp. 183-191, 2007.
[3] A. Martín, A. Escarpa, "Graphene: The cutting–edge interaction between chemistry and electrochemistry", TrAC Trends in Analytical Chemistry, vol. 56, pp. 13-26, 2014.
[4] N. A. A. Ghany, S. A. Elsherif, H. T. Handal, "Revolution of Graphene for different applications: State-of-the-art", Surfaces and Interfaces, vol. 9, pp. 93-106, 2017.
[5] F. Bonaccorso, A. Bartolotta, J. N. Coleman, C. Backes, "2D-Crystal-Based Functional Inks", Advanced Materials, vol. 28, pp. 6136-6166, 2016.
[6] A. Pritchard, "Statistical bibliography or bibliometrics", Journal of Documentation, vol. 25, pp. 1, 1969.
[7] H.-Z. Fu, M.-H. Wang, Y.-S. Ho, "Mapping of drinking water research: A bibliometric analysis of research output during 1992–2011", Science of The Total Environment, vol. 443, pp. 757-765, 2013.
[8] N. A. Luechinger, E. K. Athanassiou, W. J. Stark, "Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics", Nanotechnology, vol. 19, pp. 445201, 2008.
[9] R. Abejón, A. Garea, "A bibliometric analysis of research on arsenic in drinking water during the 1992–2012 period: An outlook to treatment alternatives for arsenic removal", Journal of Water Process Engineering, vol. 6, pp. 105-119, 2015.
[10] M. Schriver, W. Regan, W. J. Gannett, A. M. Zaniewski, M. F. Crommie, A. Zettl, "Graphene as a Long-Term Metal Oxidation Barrier: Worse Than Nothing", ACS Nano, vol. 7, pp. 5763-5768, 2013.
[11] Z. Liu, K. Parvez, R. Li, R. Dong, X. Feng, K. Müllen, "Transparent Conductive Electrodes from Graphene/PEDOT:PSS Hybrid Inks for Ultrathin Organic Photodetectors", Advanced Materials, vol. 27, pp. 669-675, 2015.
[12] Y. Tang, Y. Zhang, X. Rui, D. Qi, Y. Luo, W. R. Leow, S. Chen, J. Guo, J. Wei, W. Li, J. Deng, Y. Lai, B. Ma, X. Chen, "Conductive Inks Based on a Lithium Titanate Nanotube Gel for High-Rate Lithium-Ion Batteries with Customized Configuration", Advanced Materials, vol. 28, pp. 1567-1576, 2016.
[13] K. Krishnamoorthy, K. Jeyasubramanian, M. Premanathan, G. Subbiah, H. S. Shin, S. J. Kim, "Graphene oxide nanopaint", Carbon, vol. 72, pp. 328-337, 2014.
[14] M. J. Nine, M. A. Cole, L. Johnson, D. N. H. Tran, D. Losic, "Robust Superhydrophobic Graphene-Based Composite Coatings with Self-Cleaning and Corrosion Barrier Properties", ACS Applied Materials & Interfaces, vol. 7, pp. 28482-28493, 2015.
[15] M. P. Genovese, I. V. Lightcap, P. V. Kamat, "Sun-Believable Solar Paint. A Transformative One-Step Approach for Designing Nanocrystalline Solar Cells", ACS Nano, vol. 6, pp. 865-872, 2012.
[16] A. Mathkar, T. N. Narayanan, L. B. Alemany, P. Cox, P. Nguyen, G. Gao, P. Chang, R. Romero-Aburto, S. A. Mani, P. M. Ajayan, "Synthesis of Fluorinated Graphene Oxide and its Amphiphobic Properties", Particle & Particle Systems Characterization, vol. 30, pp. 266-272, 2013.
[17] S. Casaluci, M. Gemmi, V. Pellegrini, A. Di Carlo, F. Bonaccorso, "Graphene-based large area dye-sensitized solar cell modules", Nanoscale, vol. 8, pp. 5368-5378, 2016.
[18] K. Karimi, E. Jabari, E. Toyserkani, P. Lee-Sullivan, "Highly conductive graphene paper for flexible electronics applications", Journal of Materials Science: Materials in Electronics, vol. 29, pp. 2537-2549, 2018.
[19] S. De, J. L. Lutkenhaus, "Corrosion behaviour of eco-friendly airbrushed reduced graphene oxide-poly(vinyl alcohol) coatings", Green Chemistry, vol. 20, pp. 506-514, 2018, W. Sun, L. Wang, Z. Yang, T. Zhu, T. Wu, C. Dong, G. Liu, "A facile method for the modification of graphene nanosheets as promising anticorrosion pigments", Materials Letters, vol. 228, pp. 152-156, 2018.
[20] L.-B. Lv, T.-L. Cui, B. Zhang, H.-H. Wang, X.-H. Li, J.-S. Chen, "Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces", Angewandte Chemie International Edition, vol. 54, pp. 15165-15169, 2015.
[21] N. Karim, M. Zhang, S. Afroj, V. Koncherry, P. Potluri, K. S. Novoselov, "Graphene-based surface heater for de-icing applications", RSC Advances, vol. 8, pp. 16815-16823, 2018, S. Giaveri, P. Gronchi, A. Barzoni, "IPN Polysiloxane-Epoxy Resin for High Temperature Coatings: Structure Effects on Layer Performance after 450 °C Treatment", Coatings, vol. 7, pp. 213, 2017.
[22] Dybowska-Sarapuk, A. Kotelab, J. Krzemińskia, D. Janczaka, M. Wróblewska, H. Marcheld, P. Łęgorzb, M. Jakubowskaa, "Antibacterial activity of graphene layers," Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, Wilga, 2016.
[23] J.-W. Yang, M.-L. Tseng, Y.-M. Fu, C.-H. Kang, Y.-T. Cheng, P.-H. Kuo, C.-K. Tzeng, S.-H. Chiou, C.-Y. Wu, G.-Y. Chen, "Printable Graphene Oxide Micropatterns for a Bio-Subretinal Chip", Advanced Healthcare Materials, vol. 7, pp. 1800365, 2018.