Biosynthesis of Silver-Phosphate Nanoparticles Using the Extracellular Polymeric Substance of Sporosarcina pasteurii
References:
[1] Kumar, M.A., Fabrication and extraction of silver nanoparticle using bacillus thuringiensis. 2014, National Institute of Technology Rourkela.
[2] Gholami-Shabani, M., et al., Antimicrobial Activity and Physical Characterization of Silver Nanoparticles Green Synthesized Using Nitrate Reductase from Fusarium oxysporum. Applied biochemistry and biotechnology, 2014. 172(8): p. 4084-4098.
[3] Zaki, S., et al., The use of bioflocculant and bioflocculant-producing Bacillus mojavensis strain 32A to synthesize silver nanoparticles. Journal of Nanomaterials, 2014. 2014: p. 8.
[4] Sriram, M.I., K. Kalishwaralal, and S. Gurunathan, Biosynthesis of silver and gold nanoparticles using Bacillus licheniformis, in Nanoparticles in Biology and Medicine. 2012, Springer. p. 33-43.
[5] Kalishwaralal, K., et al., Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and Surfaces B: Biointerfaces, 2010. 77(2): p. 257-262.
[6] Sowani, H., et al., Green synthesis of gold and silver nanoparticles by an actinomycete Gordonia amicalis HS-11: Mechanistic aspects and biological application. Process Biochemistry, 2016. 51(3): p. 374-383.
[7] Hosseini-Abari, A., G. Emtiazi, and S.M. Ghasemi, Development of an eco-friendly approach for biogenesis of silver nanoparticles using spores of Bacillus athrophaeus. World Journal of Microbiology and Biotechnology, 2013. 29(12): p. 2359-2364.
[8] Velmurugan, P., et al., Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity. Bioprocess and biosystems engineering, 2014. 37(8): p. 1527-1534.
[9] El-Batal, A., et al., Synthesis of silver nanoparticles by Bacillus stearothermophilus using gamma radiation and their antimicrobial activity. World Applied sciences Journal, 2013. 22(1): p. 01-16.
[10] Dhand, V., et al., Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Materials Science and Engineering: C, 2016. 58: p. 36-43.
[11] Wei, X., et al., Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO 3. Bioresource technology, 2012. 103(1): p. 273-278.
[12] Dar, M.A., A. Ingle, and M. Rai, Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine: Nanotechnology, Biology and Medicine, 2013. 9(1): p. 105-110.
[13] Jo, J.H., et al., Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. Artificial cells, nanomedicine, and biotechnology, 2015: p. 1-6.
[14] Singh, P., et al., Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential. Artificial cells, nanomedicine, and biotechnology, 2015: p. 1-7.
[15] Wu, A., et al., Morphology-controlled synthesis of Ag 3 PO 4 nano/microcrystals and their antibacterial properties. Materials Research Bulletin, 2013. 48(9): p. 3043-3048.
[16] Chudobova, D., et al., Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS microbiology letters, 2014. 351(2): p. 195-201.
[17] Chen, X.-j., et al., Synthesis and characterization of Ag 3 PO 4 immobilized with graphene oxide (GO) for enhanced photocatalytic activity and stability over 2, 4-dichlorophenol under visible light irradiation. Journal of hazardous materials, 2015. 292: p. 9-18.
[18] Arul Jothi Nagarajan, S.I., Gautami Amarnath, Swathine and S.A.B.K. Chandrasekaran, Janitri V Babu, Harishankar M K, Dr. Devi A, Expeditious Synthesis of Silver Nanoparticles By A Novel Strain Sporosarcina pasteurii SRMNP1 and Patrocladogram Analysis For Exploration of its Closely Related Species. International Jounal of Scientific Research, 2014. 3(2).
[19] Williamson, G. and W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta metallurgica, 1953. 1(1): p. 22-31.
[20] Uvdal, K. and T. Vikinge, Chemisorption of the dipeptide Arg-Cys on a gold surface and the selectivity of G-protein adsorption. Langmuir, 2001. 17(6): p. 2008-2012.
[21] Moreau, J.W., et al., Extracellular proteins limit the dispersal of biogenic nanoparticles. Science, 2007. 316(5831): p. 1600-1603.
[22] Banu, A., V. Rathod, and E. Ranganath, Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum β-lactamase producing (ESBL) strains of Enterobacteriaceae. Materials research bulletin, 2011. 46(9): p. 1417-1423.
[23] Chen, G., et al., Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Colloids and Surfaces B: Biointerfaces, 2014. 117: p. 199-205.
[24] Nguyen, T.-D., C.-T. Dinh, and T.-O. Do, Monodisperse samarium and cerium orthovanadate nanocrystals and metal oxidation states on the nanocrystal surface. Langmuir, 2009. 25(18): p. 11142-11148.
[25] Hosseini, M.R. and M.N. Sarvi, Recent achievements in the microbial synthesis of semiconductor metal sulfide nanoparticles. Materials Science in Semiconductor Processing, 2015. 40: p. 293-301.
[26] Dong, C., et al., Synthesis of Ag 3 PO 4–ZnO nanorod composites with high visible-light photocatalytic activity. Catalysis Communications, 2014. 46: p. 32-35.