Biotransformation of Monoterpenes by Whole Cells of Eleven Praxelis clematidea-Derived Endophytic Fungi
References:
[1] R.-S. Xu, Y. Ye, W.-M. Zhao, “Natural Product Chemistry,” 2nd ed., Science Press, 2004, pp. 166-193.
[2] W.-A. Duetz, H. Bouwmeester, J. B. Van Beilen, B. Witholt, B, “Biotransformation of limonene by bacteria, fungi, yeasts, and plants,” Applied Microbiology and Biotechnology, 2003, 61(4): 269-277.
[3] K. A. C. Vespermann, B. N. Paulino, M. C. S. Barcelos, M. G. Pessoa, G. M. Pastore, G. Molina, “Biotransformation of α- and β-pinene into flavor compounds,” Applied Microbiology and Biotechnology, 2017, 101(5): 1805-1817.
[4] C. C. De Carvalho, M. M. Da Fonseca, “Biotransformation of terpenes,” Biotechnology Advance, 2006, 24(2): 134-42.
[5] R. S. Dhavalikar, P. K. Bhattacharyya, “Microbiological transformations of terpenes. Viii. Fermentation of limonene by a soil pseudomonad,” Indian Journal of Biochemistry, 1966, 3(3): 144- 157.
[6] R. S. Dhavalikar, P. N. Rangachari, P. K. Bhattacharyya, “Microbiological transformations of terpenes. IX. Pathways of degradation of limonene in a soil pseudomonad,” Indian Journal of Biochemistry, 1966, 3(3): 158-164.
[7] N. Allouche, A. Damak, R. Ellouz, S. Sayadi, “Use of whole cells of Pseudomonas aeruginosa for synthesis of the antioxidant hydroxytyrosol via conversion of tyrosol,” Applied and Environmental Microbiology, 2004, 70(4): 2105-2109.
[8] Brooks, S J, Doyle E A, O'Connor K E, Tyrosol to hydroxytyrosol biotransformation by immobilised cell extracts of Pseudomonas putida F6
[J]. Enzyme and Microbial Technology, 2006, 39(2): 191-196.
[9] Z. Bouallagui, S. Sayadi, “Production of high hydroxytyrosol yields via tyrosol conversion by Pseudomonas aeruginosa immobilized resting cells,” Journal of Agricultural and Food Chemistry, 2006, 54(26): 9906-9911.
[10] A. Esmaeili, E. Hashemi, “Biotransformation of myrcene by Pseudomonas aeruginosa,” Chemistry Central Journal, 2011, 5:26-32.
[11] P. Fontanille, A. Le Fleche, C. Larroche, “Pseudomonas rhodesiae Pf1: A new and efficient biocatalyst for production of isonovalal from α-pinene oxide,” Biocatalysis and Biotransformation, 2002, 20(6): 413-421.
[12] G. Speelmans, A. Bijlsma, G. Eggink, “Limonene bioconversion to high concentrations of a single and stable product, perillic acid, by a solvent-resistant Pseudomonas putida strain,” Applied Microbiology and Biotechnology, 1998, 50: 538-544.
[13] M. A. Mirata, D. Heerd, J. Schrader, “Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264,” Process Biochemistry, 2009, 44(7): 764-771.
[14] G. Molina, M. R. Pimentel, G. M. Pastore, “Pseudomonas: A promising biocatalyst for the bioconversion of terpenes,” Applied Microbiology and Biotechnology, 2013, 97(5): 1851-1864.
[15] G. Molina, R. L. D. Costa, A. P. Dion Sio, L. B. Juliano, M. P. Gláucia, “Biotransformation of R-(+)- and S-(‒)-limonene by Fusarium oxysporum,” 2011.
[16] J. L. Bicas, F. F. C. Barros, R. Wagner R, H. T. Godoy, G. M. Pastore, “Optimization of R-(+)-α -terpineol production by the biotransformation of R-(+)-limonene,”Journal of Industrial Microbiology & Biotechnology, 2008, 35(9): 1061-1070.
[17] J. L. Bicas, C. Pereira De Quadros, I. A. Neri-Numa, et al. “Integrated process for co-production of alkaline lipase and R-(+)-α-terpineol by Fusarium oxysporum,” Food Chemistry, 2010, 120(2): 452-456.
[18] Y.-N. Tai, M. Xu, J.-N. Ren, M. Dong, Z.-Y. Yang, S.-Y. Pan, et al, “Optimisation of α-terpineol production by limonene biotransformation using Penicillium digitatum DSM 62840,” Journal of the Science of Food and Agriculture. 2016, 96(3): 954-961.
[19] A. Adams, J. C. R. Demyttenaere, N. De Kimpe, “Biotransformation of (R)-(+)- and (S)-(-)-limonene to α-terpineol by Penicillium digitatum- investigation of the culture conditions,” Food Chemistry, 2002, 80(4): 525-534.
[20] Q. Tan, D. F. Day, K. R. Cadwallader, “Bioconversion of (R)-(+)-limonene by P-digitatum (NRRL 1202),” Process Biochemistry. 1998, 33(1): 29-37.
[21] A. Z. M. Badee, S. A. Helmy, N. F. S. Morsy, “Utilisation of orange peel in the production of α-terpineol by Penicillium digitatum (NRRL 1202),” Food Chemistry, 2011, 126(3): 849-854.
[22] M. Pescheck, M. A. Mirata, B. Brauer, U. Krings, R. G. Berger, J. Schrader, “Improved monoterpene biotransformation with Penicillium sp. By use of a closed gas loop bioreactor,” Journal of Industrial Microbiology & Biotechnology, 2009, 36(6): 827-36.
[23] E. Vanrensburg, N. Moleleki, J. P. Vanderwalt, P. J. Botes, M. S. vanDyk, “Biotransformation of (+)limonene and (-)piperitone by yeasts and yeast-like fungi,” Biotechnology Letters, 1997, 19(8): 779-782.
[24] M. A. Ferrara, D. S. Almeida, A. C. Siani, L. Lucchetti, P. S. B. Lacerda, A. Freitas, et al, “Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica”. Brazilian Journal of Microbiology, 2013, 44(4): 1075-1080.
[25] J. C. R. Demyttenaere, H. M. Willemen, “Biotransformation of linalool to furanoid and pyranoid linalool oxides by Aspergillus niger,” Phychemistry, 1997, 47(6): 1029-1036.
[26] J. C. R. Demyttenaere, A. Adams, J. Vanoverschelde, N. De Kimpe, “Biotransformation of (S)-(+)-linalool by Aspergillus niger: An investigation of the culture conditions,” Journal of Agricultural and Food Chemistry, 2001, 49(12): 5895-5901.
[27] I. Rottava I, G. Toniazzo, P. F. Cortina, E. Martello, C. E. Grando, L. A. Lerin, et al, “Screening of microorganisms for bioconversion of (-)β-pinene and R-(+)-limonene to α-terpineol,” Lwt-Food Science and Technology, 2010, 43(7): 1128-1131.
[28] H. F. Rozenbaum, M. L. Patitucci, O. A. C. Antunes, N. Pereira, “Production of aromas and fragrances through microbial oxidation of monoterpenes,”. Brazilian Journal of Chemical Engineering, 2006, 23(3): 273-279.
[29] J. C. R. Demyttenaere, J. Vanoverschelde, N. De Kimpe, “Biotransformation of (R)-(+)- and (S)-(-)-citronellol by Aspergillus sp and Penicillium sp., and the use of solid-phase microextraction for screening,” Journal of Chromatography A, 2004, 1027(1-2): 137-146.
[30] I. A. Parshikov, J. B. Sutherland, “The use of Aspergillus niger cultures for biotransformation of terpenoids,”. Process Biochemistry, 2014, 49(12): 2086-2100.
[31] P. Rodriguez, D. Gonzalez, S. Rodr Guez Giordano, “Endophytic microorganisms: A source of potentially useful biocatalysts,” Journal of Molecular Catalysis B: Enzymatic, 2016, 133: S569-S581.
[32] H. C. R. De Jesus, A. H. Jeller, H. M. Debonsi, P. B. Alves, A. L. M. Porto, “Multiple monohydroxylation products from rac-camphor by marine fungus Botryosphaeria sp isolated from marine alga Bostrychia radicans,” Journal of Brazil Chemical Society, 2017, 28(3): 498-504.
[33] M. C. Bier, A. B. Medeiros, C. R. Soccol, “Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media,” Fungal Biolology, 2017, 121(2): 137-144.
[34] W. Wang, Study on the toxicity of secondary metabolites of endophytic fungi from invasive plants Praxelis clematidea to Diaphorina citri,”. Huaqiao University, 2019.
[35] B. B. Mukherjee, G. Kraidman, I. D. Hill, “Synthesis of glycols by microbial transformation of some monocyclic terpenes,” Applied Microbiology, 1973, 25(3): 447-453.
[36] M. R. Marostica, G. M. Pastore, “Biotransformation of limonene: A review of the main metabolic pathways,”. Quimica Nova, 2007, 30(2): 382-387.
[37] Y. Noma, S. Yamasaki, Y. Asakawa, “Biotransformation of limonene and related compounds by Aspergillus cellulosae,”. Phytochemistry, 1992, 31(8): 2725-2727.
[38] M. L. Thompson, R. Marriott, A. Dowle, G. Grogan, “Biotransformation of β-myrcene to geraniol by a strain of Rhodococcus erythropolis isolated by selective enrichment from hop plants,” Applied Microbiology and Biotechnology, 2010, 85(3): 721-730.
[39] D. Hua, S. Lin, Y. Li, C. Hong, Z. Zhaobin, D. Yi, et al, “Enhanced 2-phenylethanol production from L-phenylalanine via in situ product adsorption,” Journal of Biocatalysis and Biotransformation, 2010, 28(4): 259-266.
[40] X. Qian, W. Yan, W. Zhang, W.-L. Dong,J.-F. Ma,K. Ochsenreither et al, “Current status and perspectives of 2-phenylethanol production through biological processes,” Critical Reviews in Biotechnology, 2018, 39(2): 235-248.