References:
[1] Wijesekara I., Pangestuti R., Kim S.K., Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers, 2011, 84, pp. 14-21.
[2] Schaeffer D. J., Krylov V. S., Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol Environ Saf, 2000, 45(3), pp. 208-227.
[3] Jiménez-Escrig A., Gómez-Ordóñez E., Rupérez P., Seaweed as a source of novel nutraceuticals: sulfated polysaccharides and peptides. Adv Food Nutr Res, 2011, 64, pp. 325-337.
[4] Swamy M., Marine algal sources for treating bacterial diseases. Advances in Food and Nutrition Research, 2011, 64, pp. 71-84.
[5] Zubia M., Fabre M. S., Kerjean V., Lann K. L., Stiger-Pouvreau V., Fauchon, M. et al., Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem, 2011, 116, pp. 693-701.
[6] Stout E. P, Prudhomme J., Roch K. L., Fairchild C. R., Franzblau S. G., Aalbersberg W., et al., Unusual antimalarial meroditerpenes from tropical red macroalgae. Bioorganic & Medicinal Chemistry Letters, 2020, 20, pp. 5662-5665.
[7] Kannan R. R. R., Arumugam R., Anantharaman P., Antibacterial potential of three seagrasses against human pathogens. Asian Pacific Journal of Tropical Medicine, 2010, 3, pp. 890-893.
[8] Zhang C., Li X, Kim S. K., Application of marine biomaterials for nutraceuticals and functional foods. Food Sci Biotechnol, 2012, 21, pp. 625-631.
[9] Alassali A., Cybulska I., Brudecki G. P., Brudecki G. P., Farzanah R., Thomsen M. H., Methods for Upstream Extraction and Chemical Characterization of Secondary Metabolites from Algae Biomass. Adv Tech Biol Med, 2016, 4, pp. 1-16.
[10] Hong-Wei Yen, I.-Chen Hu, Chun-Yen Chen, Shih-Hsin Ho, Duu-Jong Lee, Jo-Shu Chang, Microalgae-based biorefinery – From biofuels to natural products. Bioresource Technology, 2013, 135,pp. 166-174.
[11] Priyadarshani I., Rath B., Commercial and industrial application of micro algae – A review. J. Algal Biomass Utln., 2012, 3 (4), pp. 89 – 100.
[12] El-Sayed Salama, Kurade, M. B., Abou-Shanab, R. A. I., El-Dalatony, M. M., Il-Seung Yang, Min, B., et al., Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable and Sustainable Energy Reviews, 2017, 79, pp. 1189-1211.
[13] Wang B., Li Y., Wu N., Lan C.Q., CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol, 2008, 79 (5), pp. 707-718.
[14] Morita M., Watanabe Y., Saiki H., Photosynthetic productivity of conical helical tubular photobioreactor incorporating Chlorella sorokiniana under field conditions. In: Biotechnol. Bioeng., 2002, 77 (2), pp. 155-162.
[15] (dataset) SAG, 2014. Culture Collection of Algae at Göttingen University, List of Media and Recipes. http://www.uni-goettingen.de/de/list-of-media-and-recipes/186449.html.
[16] Lopez, C. V. G., Garcia, M. C. C., Fernandez, F. G. A., Buston, C. S., Christi, Y., Sevilla, J. M. F., Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technology, 2010, 101, pp. 7587-7591.
[17] Bradford, M., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry,1976, 72, pp. 248-254.
[18] Dubois, M., Gilles, K., Hamilton, J. K, Rebers, P. A., Smith, F., Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 1956, 28 (3), pp. 350–356.
[19] Fermentation of organic materials. Characterization of the substrate, sampling, collection of material data, fermentation tests. Vergärung organischer Stoffe Substratcharakterisierung, Probenahme, Stoffdatenerhebung, Gärversuche, VDI 4630, 2016.