Comparative Study of Calcium Content on in vitro Biological and Antibacterial Properties of Silicon-Based Bioglass
References:
[1] L. L. Hench, The story of Bioglass®, J. Mater. Sci. Mater. Med. 17 (2006) 967–978.
[2] L. L. Hench, Bioceramics: From Concept to Clinic, J. Am. Ceram. Soc. 74 (1991) 1487–1510.
[3] P. Saravanapavan, J. R. Jones, R. S. Pryce, L. L. Hench, Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2P5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O), J. Biomed. Mater. Res. 66A (2003) 110–119.
[4] T. Kokubo, Apatite formation on surfaces of ceramics, metals and polymers in body environment, Acta Mater. 46 (1998) 2519–2527.
[5] F. Sharifianjazi, N. Parvin, M. Tahriri, Formation of apatite nano-needles on novel gel derived SiO2-P2O5-CaO-SrO-Ag2O bioactive glasses, Ceram. Int. 43 (2017) 15214–15220.
[6] X. Lu, L. Deng, C. Huntley, M. Ren, P.-H. Kuo, T. Thomas, J. Chen, J. Du, Mixed Network Former Effect on Structure, Physical Properties, and Bioactivity of 45S5 Bioactive Glasses: An Integrated Experimental and Molecular Dynamics Simulation Study, J. Phys. Chem. B. 122 (2018) 2564–2577.
[7] M. Mozafari, F. Moztarzadeh, M. Tahriri, Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2–CaO–P2O5 glass in simulated body fluid, J. Non. Cryst. Solids. 356 (2010) 1470–1478.
[8] R. Gupta, A. Kumar, Bioactive materials for biomedical applications using sol–gel technology, Biomed. Mater. 3 (2008) 34005.
[9] L. L. Hench, Biomaterials: a forecast for the future, Biomaterials. 19 (1998) 1419–1423.
[10] M. Vallet-Regí, A. J. Salinas, D. Arcos, From the bioactive glasses to the star gels, J. Mater. Sci. Mater. Med. 17 (2006) 1011–1017.
[11] P. Sepulveda, J. R. Jones, L. L. Hench, Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses, J. Biomed. Mater. Res. 58 (2001) 734–740.
[12] N. Li, Q. Jie, S. Zhu, R. Wang, Preparation and characterization of macroporous sol–gel bioglass, Ceram. Int. 31 (2005) 641–646.
[13] P. Sepulveda, J. R. Jones, L. L. Hench, In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses, J. Biomed. Mater. Res. 61 (2002) 301–311.
[14] A. Perardi, M. Cerrruti, C. Morterra, Carbonate formation on sol-gel bioactive glass 58S and on Bioglass® 45S5, Stud. Surf. Sci. Catal. 155 (2005) 461–469.
[15] K. Ohura, T. Nakamura, T. Yamamuro, T. Kokubo, Y. Ebisawa, Y. Kotoura, M. Oka, Bone-bonding ability of P2O5-Free CaO • SiO2 glasses, J. Biomed. Mater. Res. 25 (1991) 357–365.
[16] J. Zhong, D. C. Greenspan, Processing and properties of sol-gel bioactive glasses, J. Biomed. Mater. Res. 53 (2000) 694–701.
[17] J. R. Jones, Review of bioactive glass: From Hench to hybrids, Acta Biomater. 9 (2013) 4457–4486.
[18] L. L. Hench, J.R. Jones, Bioactive Glasses: Frontiers and Challenges., Front. Bioeng. Biotechnol. 3 (2015) 194.
[19] J. Ye, J. He, C. Wang, K. Yao, Z. Gou, Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activity, Biotechnol. Lett. 36 (2014) 961–968.
[20] A. Moghanian, S. Firoozi, M. Tahriri, Characterization, in vitro bioactivity and biological studies of sol-gel synthesized SrO substituted 58S bioactive glass, Ceram. Int. 43 (2017).
[21] A. Moghanian, S. Firoozi, M. Tahriri, Synthesis and in vitro studies of sol-gel derived lithium substituted 58S bioactive glass, Ceram. Int. 43 (2017) 12835–12843.
[22] A. Moghanian, A. Sedghi, A. Ghorbanoghli, E. Salari, The effect of magnesium content on in vitro bioactivity, biological behavior and antibacterial activity of sol–gel derived 58S bioactive glass, Ceram. Int. (2018).
[23] I.A. Silver, J. Deas, M. Erecińska, Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability, Biomaterials. 22 (2001) 175–185.
[24] A. Moghanian, S. Firoozi, M. Tahriri, A. Sedghi, A comparative study on the in vitro formation of hydroxyapatite, cytotoxicity and antibacterial activity of 58S bioactive glass substituted by Li and Sr, Mater. Sci. Eng. C. 91 (2018) 349–360.
[25] J. Liu, S. C. F. Rawlinson, R. G. Hill, F. Fortune, Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects, Dent. Mater. 32 (2016) 412–422.
[26] G. J. Moran, R. N. Amii, F. M. Abrahamian, D. A. Talan, Methicillin-resistant Staphylococcus aureus in community-acquired skin infections., Emerg. Infect. Dis. 11 (2005) 928–30.
[27] S. Hu, J. Chang, M. Liu, C. Ning, Study on antibacterial effect of 45S5 Bioglass®, J. Mater. Sci. Mater. Med. 20 (2009) 281–286.
[28] S. Hu, C. Ning, Y. Zhou, L. Chen, K. Lin, J. Chang, Antibacterial activity of silicate bioceramics, J. Wuhan Univ. Technol. Sci. Ed. 26 (2011) 226–230.
[29] F. Sharifianjazi, N. Parvin, M. Tahriri, Synthesis and characteristics of sol-gel bioactive SiO2-P2O5-CaO-Ag2O glasses, J. Non. Cryst. Solids. 476 (2017) 108–113.
[30] A. Balamurugan, G. Sockalingum, J. Michel, J. Fauré, V. Banchet, L. Wortham, S. Bouthors, D. Laurent-Maquin, G. Balossier, Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications, 2006.
[31] I. A. Silver, J. Deas, M. Erecińska, Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability, Biomaterials. 22 (2001) 175–185.
[32] M. Taghian Dehaghani, M. Ahmadian, M. Fathi, Synthesis, Characterization, and Bioactivity Evaluation of Amorphous and Crystallized 58S Bioglass Nanopowders, Int. J. Appl. Ceram. Technol. 12 (2015) 867–874.
[33] R. Li, A. E. Clark, L. L. Hench, An investigation of bioactive glass powders by sol-gel processing, J. Appl. Biomater. 2 (1991) 231–239.
[34] Z. Hong, R. L. Reis, J. F. Mano, Preparation and in vitro characterization of novel bioactive glass ceramic nanoparticles, J. Biomed. Mater. Res. Part A. 88A (2009) 304–313.
[35] D. Arcos, D. C. Greenspan, M. Vallet-Regí, A new quantitative method to evaluate the in vitro bioactivity of melt and sol-gel-derived silicate glasses, J. Biomed. Mater. Res. Part A. 65A (2003) 344–351.
[36] L. Francis, D. Meng, J. C. Knowles, I. Roy, A. R. Boccaccini, Multi-functional P(3HB) microsphere/45S5 Bioglass®-based composite scaffolds for bone tissue engineering, Acta Biomater. 6 (2010) 2773–2786.
[37] D. S. Brauer, R. Brückner, M. Tylkowski, L. Hupa, Sodium-free mixed alkali bioactive glasses, Biomed. Glas. 2 (2016).
[38] H. M. Elgendy, M. E. Norman, A. R. Keaton, C. T. Laurencin, Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material, Biomaterials. 14 (1993) 263–269.
[39] C. E. Yellowley, Z. Li, Z. Zhou, C. R. Jacobs, H. J. Donahue, Functional Gap Junctions Between Osteocytic and Osteoblastic Cells, J. Bone Miner. Res. 15 (2010) 209–217.
[40] M. Tylkowski, D. S. Brauer, Mixed alkali effects in Bioglass® 45S5, J. Non. Cryst. Solids. 376 (2013) 175–181.
[41] S. Shahrabi, S. Hesaraki, S. Moemeni, M. Khorami, Structural discrepancies and in vitro nanoapatite formation ability of sol–gel derived glasses doped with different bone stimulator ions, Ceram. Int. 37 (2011) 2737–2746.
[42] X. Wu, G. Meng, S. Wang, F. Wu, W. Huang, Z. Gu, Zn and Sr incorporated 64S bioglasses: Material characterization, in-vitro bioactivity and mesenchymal stem cell responses, Mater. Sci. Eng. C. 52 (2015) 242–250.
[43] X. Zhang, Y. Wu, S. He, D. Yang, Structural characterization of sol–gel composites using TEOS/MEMO as precursors, Surf. Coatings Technol. 201 (2007) 6051–6058.
[44] A. Rainer, S. M. Giannitelli, F. Abbruzzese, E. Traversa, S. Licoccia, M. Trombetta, Fabrication of bioactive glass–ceramic foams mimicking human bone portions for regenerative medicine, Acta Biomater. 4 (2008) 362–369.
[45] X. Zhao, B. C. Heng, S. Xiong, J. Guo, T. T.-Y. Tan, F. Y. C. Boey, K. W. Ng, J. S. C. Loo, In vitro assessment of cellular responses to rod-shaped hydroxyapatite nanoparticles of varying lengths and surface areas, Nanotoxicology. 5 (2011) 182–194.
[46] M. Ashok, N. Meenakshi Sundaram, S. Narayana Kalkura, Crystallization of hydroxyapatite at physiological temperature, Mater. Lett. 57 (2003) 2066–2070.
[47] A. Tavakolizadeh, M. Ahmadian, M. H. Fathi, A. Doostmohammadi, E. Seyedjafari, A. Ardeshirylajimi, Investigation of Osteoinductive Effects of Different Compositions of Bioactive Glass Nanoparticles for Bone Tissue Engineering, ASAIO J. 63 (2017) 512–517.
[48] D. Khvostenko, T. J. Hilton, J. L. Ferracane, J. C. Mitchell, J. J. Kruzic, Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations, Dent. Mater. 32 (2016) 73–81.