References:
[1] Y. Freund, R. E. Schapire, “A decision-theoretic generalizationof online learning and an application to boosting," Journal of Computer andSystem Sciences, vol. 55, no. 1, pp 119-139, 1997.
[2] P. Kontschieder, M. Fiterau, A. Criminisi, S. Rota Bulo. “Deep neural decision forests,” In Proceedings of the IEEE International Conference on Computer Vision, pp 1467–1475, 2015.
[3] J. C. Wang, T. Hastie, “Boosted varying-coefficient regression models for product demand prediction,” Journal of Computational and Graphical Statistics, vol. 23, no. 2, pp 361–382, 2014.
[4] E Al Daoud, “Intrusion Detection Using a New Particle Swarm Method and Support Vector Machines,” World Academy of Science, Engineering and Technology, vol. 77, 59-62, 2013.
[5] E. Al Daoud, H Turabieh, “New empirical nonparametric kernels for support vector machine classification,” Applied Soft Computing, vol. 13, no. 4, 1759-1765, 2013.
[6] E. Al Daoud, "An Efficient Algorithm for Finding a Fuzzy Rough Set Reduct Using an Improved Harmony Search," I.J. Modern Education and Computer Science, vol. 7, no. 2, pp16-23, 2015.
[7] Y. Zhang, A. Haghani. “A gradient boosting method to improve travel time prediction. Transportation Research Part C,” Emerging Technologies, vol. 58, 308–324, 2015.
[8] K. Guolin, M. Qi, F. Thomas, W. Taifeng, C. Wei, M. Weidong, Y. Qiwei, L. Tie-Yan, "LightGBM: A Highly Efficient Gradient Boosting Decision Tree," Advances in Neural Information Processing Systems vol. 30, pp. 3149-3157, 2017.
[9] A. Dorogush, V. Ershov, A. Gulin "CatBoost: gradient boosting with categorical features support," NIPS, p1-7, 2017.
[10] M. Qi, K. Guolin, W. Taifeng, C. Wei, Y. Qiwei, M. Weidong, L. Tie-Yan, "A Communication-Efficient Parallel Algorithm for Decision Tree," Advances in Neural Information Processing Systems, vol. 29, pp. 1279-1287, 2016.
[11] A. Klein, S. Falkner, S. Bartels, P. Hennig, F. Hutter, “Fast bayesian optimization of machine learning hyperparameters on large datasets,” In Proceedings of Machine Learning Research PMLR, vol. 54, pp 528-536,2017.
[12] J. H. Aboobyda, and M. A. Tarig, “Developing Prediction Model Of Loan Risk In Banks Using Data Mining,” Machine Learning and Applications: An International Journal (MLAIJ), vol. 3, no. 1, pp 1–9, 2016.