Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models
References:
[1] Li, Z., Zhu, C., Gold, C. Digital Terrain Modeling: Principles and Methodology. (2005). Boca Raton: CRC Press.
[2] Yılmaz, M., Uysal, M., A Comparative Study Of Curvature And Grid Data Reduction Algorithms For Lidar-Derived Digital Terrain Models. Proceedings, 6 th International Conference on Cartography and GIS, 13-17 June 2016, Albena, Bulgaria
[3] Ma, R., Meyer, W. DTM generation and building detection from LiDAR data. Photogrammetric Engineering and Remote Sensing, (2005). 71, 847-854.
[4] Liu, X., Zhang, Z. LiDAR data reduction for efficient and high quality DEM generation, The International Archives of the Photogrammtery, Remote Sensing and Spatial Information Sciences, (2008). 3, XXXVII, 173-178.
[5] Vianello, A., Cavalli, M., Tarolli, P. LiDAR-derived slopes for headwater channel network analysis. Catena, (2009). 76 (2), 97-106.
[6] Razak, K.A., Straatsma, M.W., van Westen, C.J., Malet, J.P., de Jong, S.M. Airborne laser scanning of forested landslides characterization: Terrain model quality and visualization. Geomorphology, (2011). 126, 186-200.
[7] Yan, W.Y., Shaker, A., El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sensing of Environment, (2015). 158, 295-310.
[8] Polat, N., Uysal, M. DTM Generation with Uav Based Photogrammetric Point Cloud. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (2017). Volume XLII-4/W6, 2017, pp.77-79.
[9] Eisenbeiss, H., Lambers, K., Sauerbier, M., & Li, Z. Photogrammetric documentation of an archaeological site (Palpa, Peru) using an autonomous model helicopter. (2005). In Proceedings of International CIPA Symposium (pp. 238–243).
[10] Colomina, I., Bla´zquez, M., Molina, P., Pare´s, M. E., & Wis, M. Towards a new paradigm for high-resolution low-cost photogrammetry and remote sensing. (2008). In Proceedings of XXIst ISPRS congress: Technical commission I (pp. 1201).
[11] Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., & Sarazzi, D. U.AV photogrammetry for mapping and 3d modeling–current status and future perspectives. (2011). In Proceedings of the international archives of the photogrammetry, remote sensing and spatial information sciences, Volume XXXVIII-1/C22 (pp 25–31).
[12] Uysal, M. Toprak, A.S.; Polat, N. DEM generation with UAV Photogrammetry and accuracy analysis in Sahitlerhill. (2015). Measurement 2015, 73, 539–543.
[13] Polat, N., Uysal, M., An Experimental Analysis of Digital Elevation Models Generated with Lidar Data and UAV Photogrammetry. (2018). Journal of the Indian Society of Remote Sensing 46(7):1135–1142
[14] Gong, J., Li, Z., Zhu, Q., Sui, H., Zhou, Y. Effects of various factors on the accuracy of DEMs: an intensive experimental investigation. Photogrammetric Engineering and Remote Sensing, (2000). 66 (9), 1113-1117.
[15] Chen, C.F., Yue, T.X. A method of DEM construction and related error analysis. Computers and Geosciences, (2010).36 (6), 717-725.
[16] Sailer, R., Rutzinger, M., Rieg, L. Wichmann, V. Digital elevation models derived from airborne laser scanning point clouds: appropriate spatial resolutions for multi-temporal characterization and quantification of geomorphological processes. Earth Surface Processes and Landforms, (2014). 39 (2), 272-284.
[17] Rayburg, S., Thoms, M., Neave, M. A comparison of digital elevation models generated from different data sources. Geomorphology, (2009). 106, 261-270.
[18] Dorn, H., Vetter, M., Höfle, B. GIS-based roughness derivation for flood simulations: a comparison of orthophotos, LiDAR and crowdsourced geodata. Remote Sensing, (2014). 6, 1739-1759.
[19] Aguilar, F.J., Agüera, F., Aguilar, M.A., Carvajal, F. Effects of terrain morphology, sampling density and interpolation methods on grid DEM accuracy. Photogrammetric Engineering and Remote Sensing, (2005). 71 (7), 805-816.
[20] Chaplot, V., Darboux, F., Bourennane, H., Leguédois, S., Silvera, N., Phachomphon, K. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology, (2006). 77, 126-141.
[21] Yılmaz, M., Uysal, M., Comparing Uniform And Random Data Reduction Methods For DTM Accuracy. International Journal of Engineering and Geosciences (IJEG), (2017).Vol;2, Issue;01, pp. 9-16
[22] Yılmaz, M., Uysal, M., Comparison of data reduction algorithms for LiDAR‐derived digital terrain model generalization. Area. (2016). 48(4):521–532
[23] Chen, C., Li, Y. A robust method of thin plate spline and its application to DEM construction. Computers and Geosciences, (2012). 48, 9-16.
[24] Arun, P.V. A comparative analysis of different DEM interpolation methods. The Egyptian Journal of Remote Sensing and Space Sciences, (2013). 16, 133-139.
[25] Aguilar, F.J., Aguilar, M.A., Agüera, F. Accuracy assessment of digital elevation models using a non-parametric approach. International Journal of Geographical Information Science, (2007). 21 (6), 66-686.
[26] Chu, H.J., Chen, R.A., Tseng, Y.H., Wang, C.K. Identifying LiDAR sample uncertainty on terrain features from DEM simulation, Geomorphology (2014).204, 325-333.
[27] Siebert, S. Teizer, J. Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Autom Constr. (2014). 1–14.
[28] Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., and Yan, G. An easy-to-use airborne lidar data filtering method based on cloth simulation. Remote Sensing, (2016). 8(6).
[29] Anderson, E.S., Thompson, J.A., Austin, R.E. LIDAR density and linear interpolator effects on elevation estimates. International Journal of Remote Sensing, (2005). 26 (18), 3889-3900.
[30] Anderson, E.S., Thompson, J.A., Crouse, D.A., Austin, R.E. Horizontal resolution and data density effects on remotely sensed LIDAR-based DEM. Geoderma, (2006). 132 406– 415.