Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
References:
[1] F. Ziel, R. Steinert, and S. Husmann, “Efficient modeling and forecasting of electricity spot prices”, Energy Econ, vol. 47, pp. 98-111, 2015.
[2] D. Singhal, and K.S. Swarup, “Electricity price forecasting using artificial neural networks”, Int J Elect Power Energy Syst, vol. 33, pp. 550-555, 2011.
[3] S.K. Aggarwal, L.M. Saini, and A. Kumar, “Electricity price forecasting in deregulated markets: A review and evaluation”, Int J Elect Power Energy Syst, vol. 31, pp. 13-22, 2009.
[4] A. Ahmadi, M. Charwand, and J. Aghaei, “Risk-constrained optimal strategy for retailer forward contract portfolio”, Int J Elect Power Energy Sys, vol. 53, pp. 704-713, 2013.
[5] M. Carrión, A.J. Conejo, and J.M. Arroyo, “Forward contracting and selling price determination for a retailer”, IEEE Trans Power Sys, vol. 22, pp. 2105-2114, 2007.
[6] S. Yousefi, M.P. Moghaddam, and V.J. Majd, “Optimal real time pricing in an agent-based retail market using a comprehensive demand response model”, Energy, vol. 36, pp. 5716-5727, 2011.
[7] J. Yang, G. Zhang, K. Ma, “Matching supply with demand: A power control and real time pricing approach”, Appl. Energy, vol. 61, pp. 111-117, 2014.
[8] R. Weron, “Electricity price forecasting: A review of the state-of-the-art with a look into the future”, Int J Forecast, vol. 30, pp. 1030-1081, 2014.
[9] M. Cerjan, I. Krzelj, M. Vidak, and M. Delimar, “A literature review with statistical analysis of electricity price forecasting methods”, In Proceedings of the 2013 EUROCON, 756-763.
[10] R. Gareta, L.M. Romeo, and A. Gil, “Forecasting of electricity prices with neural networks”, Energy Conv Manag, vol. 47, pp. 1770-1778, 2006.
[11] N. Amjady, and F. Keynia, “Day ahead price forecasting of electricity markets by a mixed data model and hybrid forecast method”, Int J Electr Power Energy Syst, vol. 30, pp. 533-546, 2008.
[12] N. Amjady, and F. Keynia, “Day-ahead price forecasting of electricity markets by mutual information technique and cascaded neuro-evolutionary algorithm”. IEEE Trans Power Sys, vol. 24, pp. 306-308, 2009.
[13] S. Chakravarty, and P.K. Dash, “Dynamic filter weights neural network model integrated with differential evolution for day-ahead price forecasting in energy market”, Expert Sys Appl, vol. 38, pp. 10974-10982, 2011.
[14] P. Dev, and M.A. Martin, “Using neural networks and extreme value distributions to model electricity pool prices: Evidence from the Australian National Electricity Market 1998–2013”, Energy Conv Manag, vol. 84, pp. 122-132, 2014.
[15] B. Neupane, K.S. Perera, Z. Aung, and W.L. Woon, “Artificial neural network-based electricity price forecasting for smart grid deployment”, In Proceedings of the 2012 International Conference on Computer Systems and Industrial Informatics, Sharjah, pp. 1-6.
[16] H.T. Pao, “Forecasting electricity market pricing using artificial neural networks”, Energy Conv Manag, vol 48, pp. 907-912, 2007.
[17] T.M. Peng, N.F. Hubele, and G.G. Karady, “Advancement in the application of neural networks for short-term load forecasting”, IEEE Trans Power Syst, vol. 7, pp. 250-257, 1992.
[18] N.M. Pindoriya, S.N. Singh, and S.K. Singh, “An adaptive wavelet neural network-based energy price forecasting in electricity markets”, IEEE Trans Power Syst, vol. 23, pp. 1423-1431, 2008
[19] P. Areekul, Y. Senjyu, H. Toyama, and A. Yona, “A hybrid ARIMA and neural network model for short-term price forecasting in deregulated market”, IEEE Trans Power Syst, vol. 25, pp. 524-530, 2010.
[20] A. Khosravi, S. Nahavandi, and D. Creighton, “A neural network-GARCH-based method for construction of Prediction Intervals”, Elect Power Sys Res, vol. 96, pp. 185-193, 2013.
[21] N. Amjady, A. Daraeepour, and F. Keynia, “Day-ahead electricity price forecasting by modified relief algorithm and hybrid neural network”, IET Gener Transm Distrib, vol. 4, pp. 432-444, 2010.
[22] S. Hassan, A. Khosravi, J. Jaafar, amd M.Q. Raza, “Electricity load and price forecasting with influential factors in a deregulated power industry”, In Proceedings of the 2014 9th International Conference on System of Systems Engineering (SOSE), 79-84.
[23] H.S. Sandhu, L. Fang, and L. Guan, “Forecasting day-ahead electricity prices using data mining and neural network techniques”, In Proceedings of the 2014 11th International Conference on Service Systems and Service Management (ICSSSM), 1-6.
[24] A. Agarwal, A. Ojha, S,C, Tewari, and M.M. Tripathi, “Hourly load and price forecasting using ANN and fourier analysis”, In Proceedings of the 2014 6th IEEE Power India International Conference (PIICON), 1-6.
[25] E. Elattar, and E.K. Shebin, “Day-ahead price forecasting of electricity markets based on local informative vector machine”, IET Gener Trans Distrib, vol. 7, pp. 1063-1071, 2013.
[26] H. Shayeghi, and A. Ghasemi, “Day-ahead electricity prices forecasting by a modified CGSA technique and hybrid WT in LSSVM based scheme”, Energy Conv Manag, vol. 74, pp. 482-491, 2013.
[27] N.A. Shrivastava, A. Khosravi, and B.K. Panigrahi, “Prediction interval estimation for electricity price and demand using support vector machines”, In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), 3995-4002.
[28] S. Fan, C. Mao, and L. Chen, “Next-day electricity-price forecasting using a hybrid network”, IET Gener Trans Distrib, vol. 1, pp. 176-82, 2007.
[29] D. Niu, D. Liu, and D.D. Wu, “A soft computing system for day-ahead electricity price forecasting”, Appl. Soft Comp, vol. 10, pp. 868-875, 2010.
[30] M. Bashari, A. Darudi, and N. Raeyatdoost, “Kalman Fusion algorithm in electricity price forecasting”, In Proceedings of the 2014 14th International Conference on Environment and Electrical Engineering (EEEIC), 313-317.
[31] LAGIE S.A.: http://www.lagie.gr/
[32] D. Graupe. Principles of Artificial Neural Networks. Singapore: World Scientific Publishing Company; 2007.
[33] J-SR. Jang, “ANFIS: adaptive-network-based fuzzy inference system”, Syst Man Cyber, vol. 23, pp. 665-685, 1993.
[34] B. Soldo, P. Potocnik, G. Simunovi, T. Sari, and E. Govekar, “Improving the residential natural gas consumption forecasting models by using solar radiation”, Energy and Buildings, vol. 69, pp. 498-506, 2014.
[35] R.A. Hatami, H. Seifi, and M.K. Sheikh-El-Eslami, “Optimal selling price and energy procurement strategies for a retailer in an electricity market”, Elect Power Syst Res, vol. 79, 246-254, 2009
[36] J.M. Yusta, I.J.R. Rosado, J.A.D. Navarro, J.M.P. Vidal, “Optimal electricity price calculation model for retailers in a deregulated market”, Int J Elect Power Energy Syst vol.27, pp. 437-447, 2005
[37] S.A. Gabriel, M.F. Genc, and S. Balakrishnan, “A simulation approach to balancing annual risk and reward in retail electrical power markets”, IEEE Trans Power Syst, vol. 17, pp. 1050-1057, 2002
[38] S.A. Gabriel, A.J. Conejo, M.A. Plazas, and S. Balakrishnan, “Optimal price and quantity determination for retail electric power contracts”, IEEE Trans Power Syst, vol. 21, pp. 180-187, 2006
[39] M. Carrión, J.M. Arroyo, and A.J. Conejo, “A bilevel stochastic programming approach for retailer futures market trading”, IEEE Trans Power Syst, vol. 24, pp. 1446-1456, 2009
[40] N. Mahmoudi-Kohan, M. Parsa Moghaddam, and M.K. Sheikh-El-Eslami, “An annual framework for clustering-based pricing for an electricity retailer”, Elect Power Syst Res, vol. 80, pp. 1042-1048, 2010