References:
[1] Seelig, G., Soloveichik, D., Zhang, D.Y., & Winfree, E. (2006).
Enzyme-free nucleic acid logic circuits. Science, 314, 1585-1588.
[2] Zhang, D.Y., Turberfield, A.J., Yurke, B. & Winfree, E. (2007).
Engineering entropy-driven reactions and networks catalyzed by DNA.
Science, 318, 1121-1125.
[3] Padirac, A., Fujii, T., & Rondelez, Y. (2013). Nucleic acids for the
rational design of reaction circuits. Current Opinion of Biotechnology,
24, 575-580.
[4] Yordanov, B., Kim, J., Petersen, R.L., Shudy, A., Kulkarni, V.V., &
Philips, A. (2014). Computational design of nucleic acid feedback control
circuits. ACS Synthetic Biology, 3, 600-616.
[5] Zhang, D.Y. (2011). Towards domain-based sequence design for
DNA strand displacement reactions. DNA Computing and Molecular
Programming, Springer Berlin Heidelberg, 162-175.
[6] Montagne, K., Plasson, R., Sakai, Y., Fujii, T., & Rondelez, Y. (2011).
Programming an in vitro DNA oscillator using a molecular networking
strategy. Molecular Systems Biology, 7, 466.
[7] Kim, J., & Winfree, E. (2011). Synthetic in vitro transcriptional
oscillators. Molecular Systems Biology, 7, 465.
[8] Chen, Y.-J., Dalchau, N., Srinivas, N., Philips, A., Cardelli, L.,
Soloveichik, D., & Seelig, G. (2013). Programmable chemical controllers
made from DNA. Nature Nanotechnology, 8, 755-762.
[9] Fujii, T., & Rondelez, Y. (2013). Predator-prey molecular ecosystems.
ACS Nano, 7, 27-34.
[10] Soloveichik, D., Seelig, G., Winfree, E. (2010). DNA as a universal
substrate for chemical kinetics. Proceedings of National Academy of
Sciences, USA, 12, 5393-5398.
[11] Alberts, B. and Johnsosn, A. and Lewis, J. and Raff, M. and Roberts,
K. and Walter, P. (2007). Molecular Biology of the Cell (5th Edition).
Garland Science, New York, NY.
[12] Lim, W. and Mayer, B. and Pawson, T. (2014). Cell Signaling. Garland
Science, New York, NY.
[13] Ma, K.C. and Perli, S.D. and Lu, T.K. (2016). Foundations and emerging
paradigms for computing in living cells. Journal of Molecular Biology,
428, pp. 893-915.
[14] Chou, C. T. (2017) Chemical reaction networks for computing logarithm.
Synthetic Biology, 2(1), ysx002.
[15] Oishi, K., & Klavins, E. (2011). Biomolecular implementation of linear
I/O systems. IET Systems Biology, 5, 252-260.
[16] Brent, R. P. (2018). Fast Algorithms for High-Precision Computation of
Elementary Functions, 5.
[17] Zarubiieva, I., Tseng, J.Y. and Kulkarni, V. (2018). Accurate Ratio
Computation using Abstract Chemical Reaction Networks. IAENG
WCE 2018: International Association of Engineers World Congress on
Engineering.