CPU Architecture Based on Static Hardware Scheduler Engine and Multiple Pipeline Registers
References:
[1] G. C. Buttazzo, “Hard Real-Time Computing Systems - Predictable Scheduling Algorithms and Applications,” Third edition, Springer, 2011, ISBN: 978-1-4614-0675-4.
[2] W. Stallings, “Computer Organization and Architecture,” 10th Edition, 2015, ISBN: 978-0134101613.
[3] E. Dodiu and V. G. Gaitan, “Custom designed CPU architecture based on a hardware scheduler and independent pipeline registers – concept and theory of operation” in IEEE EIT International Conference on Electro-Information Technology, Indianapolis, IN, USA, pp. 1-5, May 2012.
[4] V. G. Gaitan, N. C. Gaitan, and I. Ungurean, “CPU Architecture Based on a Hardware Scheduler and Independent Pipeline Registers,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 9, pp. 1661-1674, Sept. 2015.
[5] J. Shawash, and D. R. Selviah, “Real-time nonlinear parameter estimation using the Levenberg–Marquardt algorithm on field programmable gate arrays,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 170–176, Jan. 2013.
[6] M. Shahbazi, P. Poure, S. Saadate, and M. R. Zolghadri, “Fault-tolerant five-leg converter topology with FPGA-based reconfigurable control,” IEEE Trans. Ind. Electron., vol. 60, no. 6, pp. 2284–2294, Jun. 2013.
[7] T. T. Phuong, K. Ohishi, Y. Yokokura, and C. Mitsantisuk, “FPGA-based high-performance force control system with friction-free and noisefree force observation,” IEEE Trans. Ind. Electron., vol. 61, no. 2, pp. 994–1008, Feb. 2014.
[8] D. A. Patterson and J. L. Hennessy, “Computer Organization and Design, Revised Fourth Edition: The Hardware-Software Interface,” Fourth Edition, 2011, ISBN: 978-0-12-374750-1.
[9] I. Zagan, “Improving the performance of CPU architectures by reducing the Operating System overhead,” in the 3rd IEEE Workshop on Advances in Information, Electronic and Electrical Engineering AIEEE’2015, pp. 1-6, 13-14 Nov. 2015, Riga, Latvia.
[10] “MIPS® Architecture for Programmers Volume I-A: Introduction to the MIPS32® Architecture,” Revision 3.02, Mar. 2011, Available: https://courses.engr.illinois.edu/cs426/Resources/MIPS32INT-AFP-03.02.pdf (Accessed: May 2016).
[11] I. Zagan and V. G. Gaitan, “Schedulability Analysis of nMPRA Processor based on Multithreaded Execution,” in 13rt International Conference on Development and Application Systems, Suceava, Romania, pp. 130-134, May 19-21, 2016.
[12] http://opencores.org/project,mips32r1 (Accessed: Sept. 2015).
[13] www.xilinx.com/support/documentation/boards_and.../ug885_VC707_Eval_Bd.pdf (Accessed: Aug. 2016).
[14] E. E Moisuc, A. B. Larionescu, and V. G. Gaitan, “Hardware Event Treating in nMPRA,” in 12rt International Conference on Development and Application Systems, Suceava, Romania, pp. 66-69, 15–17 May, 2014.
[15] I. Zagan, “Real-time evaluation of nMPRA CPU Architecture based on Multithreaded Execution,” in 8th International Conference on Computer Science and Information Technology, Amsterdam, Netherlands, 10–11 Dec. 2015.
[16] N. C. Gaitan, I. Zagan, and V. G. Gaitan, “Predictable CPU Architecture Designed for Small Real-Time Application - Concept and Theory of Operation,” International Journal of Advanced Computer Science and Applications – IJACSA, vol. 6, no. 4, 2015.