Current Status of Industry 4.0 in Material Handling Automation and In-house Logistics
References:
[1] Kagermann, V. H., Lukas, W.-D., & Wahlster, W. (2011). Industrie 4 0 Mit dem Internet der Dinge auf dem Weg zur vierten industriellen Revolution 2. Retrieved from VDI nachrichten website: http://www.wolfgang-wahlster.de/wordpress/wp-content/uploads/Industrie_4_0_Mit_dem_Internet_der_Dinge_auf_dem_Weg_zur_vierten_industriellen_Revolution_2.pdf
[2] Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, Vol. 6, 1–10. https://doi.org/10.1016/j.jii.2017.04.005
[3] Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, Vol. 117, 408–425. https://doi.org/10.1016/j.psep.2018.05.009
[4] Li, X., Li, D., Wan, J., Vasilakos, A. V., Lai, C. F., & Wang, S. (2017). A review of industrial wireless networks in the context of industry 4.0. Wireless networks, 23(1), 23-41. https://doi.org/10.1007/s11276-015-1133-7
[5] Givehchi, O., Trsek, H., & Jasperneite, J. (2013, September). Cloud computing for industrial automation systems—A comprehensive overview. In 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA) (pp. 1-4). IEEE. https://ieeexplore.ieee.org/document/6648080
[6] Bahrin, M. A. Kamarul, Othman, M. F., Nor Azli, N. H., & Talib, M. F. (2016). Industry 4.0: A Review on Industrial Automation and Robotic. Jurnal Teknologi, 78(6–13). https://doi.org/10.11113/jt.v78.9285
[7] Wang, L., & Wang, G. (2016). Big data in cyber-physical systems, digital manufacturing and industry 4.0. International Journal of Engineering and Manufacturing (IJEM), 6(4), 1-8. https://doi.org/10.5815/ijem.2016.04.01
[8] Fraga-Lamas, P., Fernández-Caramés, T. M., Blanco-Novoa, Ó., & Vilar-Montesinos, M. A. (2018). A review on industrial augmented reality systems for the industry 4.0 shipyard. IEEE Access, 6, 13358-13375. https://doi.org/10.1109/ACCESS.2018.2808326
[9] Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of industry 4.0: a review. Engineering, 3(5), 616-630. https://doi.org/10.1016/J.ENG.2017.05.015
[10] Uhlemann, T. H. J., Lehmann, C., & Steinhilper, R. (2017). The digital twin: Realizing the cyber-physical production system for industry 4.0. Procedia Cirp, 61, 335-340. https://doi.org/10.1016/j.procir.2016.11.152
[11] Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012
[12] Pereira, A. C., & Romero, F. (2017). A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manufacturing, Vol. 13, 1206–1214. https://doi.org/10.1016/j.promfg.2017.09.032
[13] Strandhagen, J. O., Vallandingham, L. R., Fragapane, G., Strandhagen, J. W., Stangeland, A. B. H., & Sharma, N. (2017). Logistics 4.0 and emerging sustainable business models. Advances in Manufacturing, 5(4), 359–369. https://doi.org/10.1007/s40436-017-0198-1
[14] Tjahjono, B., Esplugues, C., Ares, E., & Pelaez, G. (2017). What does Industry 4.0 mean to Supply Chain? Procedia Manufacturing, 13, 1175–1182. https://doi.org/10.1016/j.promfg.2017.09.191
[15] Kagermann, V. H. (2014). Change Through Digitization—Value Creation in the Age of Industry 4.0. Management of Permanent Change, 23–45. https://doi.org/10.1007/978-3-658-05014-6_2
[16] Edirisuriya, A., Weerabahu, S., & Wickramarachchi, R. (2018). Applicability of Lean and Green Concepts in Logistics 4.0: A Systematic Review of Literature. 2018 International Conference on Production and Operations Management Society (POMS). https://doi.org/10.1109/poms.2018.8629443
[17] LI, F., Sijun, L., & Cui, Y. (2018). Logistics Planning and Its Applications for Engine Plant under ‘Industry 4.0.’ SAE Technical Paper Series. https://doi.org/10.4271/2018-01-1205
[18] Hofmann, E., & Rüsch, M. (2017). Industry 4.0 and the current status as well as future prospects on logistics. Computers in Industry, 89, 23–34. https://doi.org/10.1016/j.compind.2017.04.002
[19] Kayikci, Y. (2018). Sustainability impact of digitization in logistics. Procedia Manufacturing, 21, 782–789. https://doi.org/10.1016/j.promfg.2018.02.184
[20] Barreto, L., Amaral, A., & Pereira, T. (2017). Industry 4.0 implications in logistics: an overview. Procedia Manufacturing, 13, 1245–1252. https://doi.org/10.1016/j.promfg.2017.09.045
[21] Martin, J., May, S., Endres, S., & Cabanes, I. (2017). Decentralized Robot-Cloud Architecture for an Autonomous Transportation System in a Smart Factory. SEMANTICS Workshops.
[22] Lutz, M., Verbeek, C., & Schlegel, C. (2016). Towards a robot fleet for intra-logistic tasks: Combining free robot navigation with multi-robot coordination at bottlenecks. 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA). https://doi.org/10.1109/etfa.2016.7733602
[23] Bechtsis, D., Tsolakis, N., Vouzas, M., & Vlachos, D. (2017). Industry 4.0: Sustainable material handling processes in industrial environments. Computer Aided Chemical Engineering, 2281–2286. https://doi.org/10.1016/b978-0-444-63965-3.50382-2
[24] Naidoo, N., Bright, G., & Stopforth, R. (2019). A Distributed Framework for Programming the Artificial Intelligence of Mobile Robots in Smart Manufacturing Systems. 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA). https://doi.org/10.1109/robomech.2019.8704788
[25] Hussnain, A., Ferrer, B. R., & Lastra, J. L. M. (2018). Towards the deployment of cloud robotics at factory shop floors: A prototype for smart material handling. 2018 IEEE Industrial Cyber-Physical Systems (ICPS). https://doi.org/10.1109/icphys.2018.8387635
[26] Zhou, W., Piramuthu, S., Chu, F., & Chu, C. (2017). RFID-enabled flexible warehousing. Decision Support Systems, 98, 99–112. https://doi.org/10.1016/j.dss.2017.05.002
[27] Zou, O., & Zhong, R. Y. (2018). Automatic Logistics in a Smart Factory using RFID-enabled AGVs. 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). https://doi.org/10.1109/aim.2018.8452349
[28] Mehami, J., Nawi, M., & Zhong, R. Y. (2018). Smart automated guided vehicles for manufacturing in the context of Industry 4.0. Procedia Manufacturing, 26, 1077–1086. https://doi.org/10.1016/j.promfg.2018.07.144
[29] Müller, C., Grunewald, M., & Spengler, T. S. (2016). Redundant configuration of automated flow lines based on “Industry 4.0”-technologies. Journal of Business Economics, 87(7), 877–898. https://doi.org/10.1007/s11573-016-0831-7
[30] Ghafoorpoor Yazdi, P., Azizi, A., & Hashemipour, M. (2019). A Hybrid Methodology for Validation of Optimization Solutions Effects on Manufacturing Sustainability with Time Study and Simulation Approach for SMEs. Sustainability, 11(5), 1454. https://doi.org/10.3390/su11051454
[31] Delfmann, W., Ten Hompel, M., Kersten, W., Schmidt, T., & Stölzle, W. (2018). Logistics as a science: Central research questions in the era of the fourth industrial revolution. Logistics Research, 11(9), 1–13. https://doi.org/doi:10.23773/2018_9