Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 30320

Select areas to restrict search in scientific publication database:
Data Mining Classification Methods Applied in Drug Design
Data mining incorporates a group of statistical methods used to analyze a set of information, or a data set. It operates with models and algorithms, which are powerful tools with the great potential. They can help people to understand the patterns in certain chunk of information so it is obvious that the data mining tools have a wide area of applications. For example in the theoretical chemistry data mining tools can be used to predict moleculeproperties or improve computer-assisted drug design. Classification analysis is one of the major data mining methodologies. The aim of thecontribution is to create a classification model, which would be able to deal with a huge data set with high accuracy. For this purpose logistic regression, Bayesian logistic regression and random forest models were built using R software. TheBayesian logistic regression in Latent GOLD software was created as well. These classification methods belong to supervised learning methods. It was necessary to reduce data matrix dimension before construct models and thus the factor analysis (FA) was used. Those models were applied to predict the biological activity of molecules, potential new drug candidates.
Digital Object Identifier (DOI):


[1] A.Hoeben, B.Landuyt, M. S. Highley, H.Wildiers, A. T. Van Oosterom, and E. A. De Bruijn,"Vascular Endothelial Growth Factor and Angiogenesis," Pharmacological Reviews, vol. 56 no. 4, pp. 549-580, Dec. 2004.
[2] Boh├í─ì A., Faculty of Natural Science, Comenius University in Bratislava, [email protected], private communication, 2009.
[3] DRAGON Professional verzion 5.5 2007,TALETE, srl.
[4] J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, and R. G. Coleman, "ZINC--a free database of commercially available compounds for virtual screening,"J. Chem. Inf. Model., 2012, accepted for publication.
[5] W. Härdle, and L. Simar,Applied Multivariate Statistical Analysis.New York: Springer, Berlin, 2007.
[6] IBM SPSS Statistics, Help, Algorithms
[online]. On-line manual.
[cit. 2011-01-16], troduction.htm.
[7] J. K. Vermunt, and J. Magidson,Technical Guide for Latent GOLD 4.0: Basic and Advanced
[online]. Statistical Innovations Inc., Belmont Massachusetts, 2005,
[cit. 2011-01-16].
[8] J. K.Vermunt, and J. Magidson,"Latent class cluster analysis,"J. A. Hagenaars, A. L. McCutcheon (eds.). Applied Latent Class Analysis. Cambridge : Cambridge University Press, pp. 89-106,2002.
[9] A. Liaw, and M. Wiener,"Classification and Regression by randomForest," R News, vol. 2, no.3, pp. 18ÔÇö22,2002.
[10] A.Gelman, Y. S. Su, M.Yajima, J. Hill, M. G.Pittau, J. Kerman, and T. Zheng, "arm: Data Analysis Using Regression and Multilevel/Hierarchical Models," R package version 1.5-02.://CRAN.Rproject. org/package=arm,2012.
[11] L. Breiman, J.H. Friedman, R.A. Olshen, andC.J. Stone,Classification and Regression Trees.Chapman and Hall,Wadsworth, Inc., New York, 1984.
[12] StatSoft, Inc. Electronic Statistics Textbook. Tulsa, OK: StatSoft. WEB:, 2011.
[13] L. Breiman, " Random Forests,"in Machine Learning, vol. 45, pp. 5-32, 2001.
[14] Ho Tin Kam,"Random Decision Forest," in.Proc. of the 3rd Int-l Conf. on Document Analysis and Recognition, Montreal, Canada, August 14- 18, pp. 278-282, 1995.
[15] T. Hastie, R.Tibshirani, and J. H. Friedman,The elements of statistical learning: data mining, inference, and prediction. New York: Springer- Verlag, 2001.
[16] A.Gelman, A.Jakulin, M. G.Pittau, and Y.S. Su, "A weakly informative default prior distribution for logistic and other regression models," The annals of Applied Statistics, vol. 2, no. 4, pp.1360-1383, 2008.
Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007