References:
[1] N. Bolger and J.-P. Laurenceau, Intensive Longitudinal Methods: An
Introduction to Diary and Experience Sampling Research. New York,
NY: Guilford Press, 2013.
[2] T. H. Walls and J. L. Schafer, Models for intensive longitudinal data.
Oxford: University Press, 2006.
[3] S. Shiffman, A. A. Stone, and M. R. Hufford, “Ecological momentary
assessment.” Annual Review of Clinical Psychology, vol. 4, pp. 1–32,
2008.
[4] A. Stone, S. Shiffman, A. Atienza, and L. Nebeling, The Science of
Real-Time Data Capture: Self-Reports in Health Research. NY: Oxford
University Press, 2008.
[5] L. Ou, M. D. Hunter, and S.-M. Chow, “What’s for dynr: A package
for linear and nonlinear dynamic modeling in R,” The R Journal, 2019,
in press.
[6] D. B. Rubin, “Inference and missing data,” Biometrika, vol. 63, no. 3,
pp. 581–592, 1976.
[7] L. Ji, S.-M. Chow, A. C. Schermerhorn, N. C. Jacobson, and E. M.
Cummings, “Handling missing data in the modeling of intensive
longitudinal data,” Structural Equation Modeling: A Multidisciplinary
Journal, pp. 1–22, 2018.
[8] D. B. Rubin, Multiple imputation for nonresponse in surveys. John
Wiley & Sons, 2004, vol. 81.
[9] S. van Buuren and C. Oudshoorn, “Multivariate imputation by chained
equations,” MICE V1. 0 user’s manual. Leiden: TNO Preventie en
Gezondheid, 2000.
[10] S. van Buuren and K. Groothuis-Oudshoorn, “mice: Multivariate
imputation by chained equations in R,” Journal of Statistical
Software, vol. 45, no. 3, pp. 1–67, 2011.
[Online]. Available:
http://www.jstatsoft.org/v45/i03/
[11] T. E. Raghunathan, J. M. Lepkowski, J. Van Hoewyk, P. Solenberger
et al., “A multivariate technique for multiply imputing missing values
using a sequence of regression models,” Survey methodology, vol. 27,
no. 1, pp. 85–96, 2001.
[12] T. W. Anderson, “Maximum likelihood estimates for a multivariate
normal distribution when some observations are missing,” Journal of
the American Statistical Association, vol. 52, pp. 200–203, June 1957.
[Online]. Available: http://www.jstor.org/stable/2280845
[13] J. A. Russell, “Core affect and the psychological construction of
emotion,” Psychological Review, vol. 110, pp. 145–172, 2003.
[14] P. Kuppens, Z. Oravecz, and F. Tuerlinckx, “Feelings change:
Accounting for individual differences in the temporal dynamics of
affect,” Journal of Personality and Social Psychology, vol. 99, pp.
1042–1060, 2010.
[15] U. Ebner-Priemer, M. Houben, P. Santangelo, N. Kleindienst,
F. Tuerlinckx, Z. Oravecz, G. Verleysen, K. V. Deun, M. Bohus, and
P. Kuppens, “Unraveling affective dysregulation in borderline personality
disorder: a theoretical model and empirical evidence.” Journal of
abnormal psychology, vol. 124 1, pp. 186–98, 2015.
[16] J. A. Russell and L. F. Barrett, “Core affect, prototypical emotional
episodes, and other things called emotion: dissecting the elephant,”
Journal of Personality and Social Psychology, vol. 76, pp. 805–819,
1999.
[17] R. W. Picard, S. Fedor, and Y. Ayzenberg, “Multiple Arousal
Theory and Daily-Life Electrodermal Activity Asymmetry,”
Emotion Review, pp. 1–14, Mar. 2015.
[Online]. Available:
http://emr.sagepub.com/content/early/2015/02/20/1754073914565517
[18] N. L. Sin, R. P. Sloan, P. S. McKinley, and D. M. Almeida, “Linking
daily stress processes and laboratory-based heart rate variability in a
national sample of midlife and older adults,” Psychosomatic medicine,
vol. 78(5), pp. 573–582, 2016.
[19] T. Bossmann, M. K. Kanning, S. Koudela-Hamila, S. Hey, and
U. Ebner-Priemer, “The association between short periods of everyday
life activities and affective states: A replication study using ambulatory
assessment,” Frontiers in Psychology, vol. 4, 2013.
[20] G. F. Dunton, J. Huh, A. M. Leventhal, N. R. Riggs, D. Hedeker,
D. Spruijt-Metz, and M. A. Pentz, “Momentary assessment of affect,
physical feeling states, and physical activity in children.” Health
psychology : official journal of the Division of Health Psychology,
American Psychological Association, vol. 33 3, pp. 255–63, 2014.
[21] M. K. Kanning and D. Schoebi, “Momentary affective states are
associated with momentary volume, prospective trends, and fluctuation
of daily physical activity,” Frontiers in Psychology, vol. 7, 2016.
[22] C. Y. N. Niermann, C. Herrmann, B. von Haaren, D. H. H. V. Kann,
and A. Woll, “Affect and subsequent physical activity: An ambulatory
assessment study examining the affect-activity association in a real-life
context,” Frontiers in Psychology, vol. 7, 2016.
[23] Y. Liao, C.-P. Chou, J. Huh, A. M. Leventhal, and G. F. Dunton,
“Examining acute bi-directional relationships between affect, physical
feeling states, and physical activity in free-living situations using
electronic ecological momentary assessment,” Journal of Behavioral
Medicine, vol. 40, pp. 445–457, 2016.
[24] S.-M. Chow, M.-H. R. Ho, E. J. Hamaker, and C. V. Dolan,
“Equivalences and differences between structural equation and
state-space modeling frameworks,” Structural Equation Modeling,
vol. 17, pp. 303–332, 2010.
[25] J. Durbin and S. J. Koopman, Time Series Analysis by State Space
Methods. Oxford, United Kingdom: Oxford University Press, 2001.
[26] S.-M. Chow, L. Ou, A. Ciptadi, E. Prince, M. D. Hunter, D. You, J. M.
Rehg, A. Rozga, and D. S. Messinger, “Representing sudden shifts in
intensive dyadic interaction data using differential equation models with
regime switching,” Psychometrika, vol. 83, no. 2, pp. 476–510, 2018.
[27] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45,
1960.
[28] P. De Jong, “The likelihood for a state space model,” Biometrika, vol. 75,
no. 1, pp. 165–169, March 1988.
[29] A. C. Harvey, Forecasting, Structural Time Series Models and the
Kalman Filter. Cambridge, United Kingdom: Cambridge University
Press, 1989.
[30] J. D. Hamilton, Time Series Analysis. Princeton, NJ: Princeton
University Press, 1994.
[31] S.-M. Chow and G. Zhang, “Nonlinear regime-switching state-space
(RSSS) models,” Psychometrika, vol. 78, no. 4, pp. 740–768, 2013.
[32] H. Akaike, “Information theory and an extension of the maximum
likelihood principle,” in Second International Symposium on Information
Theory, B. N. Petrov and F. Csaki, Eds. Budapest: Akademiai Kiado,
1973, pp. 267–281.
[33] G. Schwarz, “Estimating the dimension of a model,” The Annals of
Statistics, vol. 6, no. 2, pp. 461–464, 1978.
[34] F. Thoemmes and N. Rose, “A cautious note on auxiliary variables that
can increase bias in missing data problems,” Multivariate Behavioral
Research, vol. 49, no. 5, pp. 443–459, 2014.
[35] L. M. Collins, J. L. Schafer, and C.-M. Kam, “A comparison of
inclusive and restrictive strategies in modern missing data procedures.”
Psychological methods, vol. 6, no. 4, p. 330, 2001.
[36] A. Gelman and D. B. Rubin, “Inference from iterative simulation using
multiple sequences,” Statistical science, vol. 7, no. 4, pp. 457–472, 1992.
[37] S. Brooks and A. Gelman, “Some issues for monitoring convergence
of iterative simulations,” Computing Science and Statistics, pp. 30–36,
1998.
[38] R. W. Picard, “Recognizing Stress, Engagement, and Positive Emotion,”
in Proceedings of the 20th International Conference on Intelligent User
Interfaces, ser. IUI ’15. New York, NY, USA: ACM, 2015, pp. 3–4.
[Online]. Available: http://doi.acm.org/10.1145/2678025.2700999
[39] P. Kuppens, N. B. Allen, and L. B. Sheeber, “Emotional inertia and
psychological maladjustment,” Psychological Science, 2010.
[40] P. Royston, “Multiple imputation of missing values,” The Stata Journal,
vol. 4, no. 3, pp. 227–241, 2004.
[41] K. Lu, “Number of imputations needed to stabilize estimated treatment
difference in longitudinal data analysis,” Statistical methods in medical
research, vol. 26, no. 2, pp. 674–690, 2017.
[42] R. J. Little and D. B. Rubin, Statistical analysis with missing data.
Wiley, 2019, vol. 793.