References:
[1] L. Mo, F. Zhang, M. Deng, F. Jin, A. Al-Tabbaa, A. Wang, “Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates,” Cem. Concr. Compos., vol. 83, pp. 138-145, 2017.
[2] K. Komnitsas, G. Bartzas, V. Karmali, E. Petrakis, W. Kurylak, G. Pietek, J. Kanasiewicz, “Assessment of alkali activation potential of a Polish ferronickel slag,” Sustainability, vol. 11, 1863, 2019.
[3] C. Chen, G. Habert, Y. Bouzidi, A. Jullien, “Environmental impact of cement production: detail of the different processes and cement plant variability evaluation,” J. Clean. Prod., vol. 18, pp. 478-485, 2010.
[4] M. Ali, R. Saidur, M. Hossain, “A review on emission analysis in cement industries,” Renew. Sust. Energ. Rev., vol 15, pp. 2252-2261, 2011.
[5] C. Maharaj, D. White, R. Maharaj, C. Morin, “Re-use of steel slag as an aggregate to asphaltic road pavement surface,” Cogent Eng., vol. 4, 1416889, 2017.
[6] K. Komnitsas, “Potential of geopolymer technology towards green buildings and sustainable cities,” Procedia Eng., vol. 21, pp. 1023-1032, 2011.
[7] A. Mehta, R. Siddique, “Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties,” J. Clean. Prod., vol. 205, pp. 49-57, 2018.
[8] K. Komnitsas, D. Zaharaki, “Geopolymerisation: A review and prospects for the minerals industry,” Miner. Eng., vol. 20, pp. 1261-1277, 2007.
[9] K. Komnitsas, D. Zaharaki, V. Perdikatsis, “Geopolymerisation of low calcium ferronickel slags,” J. Mater. Sci., vol. 42, pp. 3073-3082, 2007.
[10] K. Komnitsas, D. Zaharaki, V. Perdikatsis, “Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers,” J. Hazard. Mater., vol. 161, pp. 760-768, 2009.
[11] H. Xu, J.S.J. Van Deventer, “The geopolymerisation of alumino-silicate minerals,” Int. J. Miner. Process., vol. 59, pp. 247-266, 2000.
[12] D. Zaharaki, K. Komnitsas, V. Perdikatsis, “Use of analytical techniques for identification of inorganic polymer gel composition,” J. Mater. Sci., vol. 45, pp. 2715-2724, 2010.
[13] E. Petrakis, E. Stamboliadis, K. Komnitsas, “Identification of optimal mill operating parameters during grinding of quartz with the use of population balance modelling,” KONA Powder Part. J., vol. 34, pp. 213-223, 2017.
[14] J. Kierczak, C. Neel, J. Puziewicz, H. Bril, “The Mineralogy and weathering of slag produced by the smelting of lateritic Ni ores, Szklary, Southwestern Poland,” Can. Miner. vol. 47, pp. 557–572, 2009.
[15] U. Kuila, M. Prasad, “Specific surface area and pore‐size distribution in clays and shales,” Geophys. Prospect., vol. 61, pp. 341-362, 2012.
[16] British Standards Institute. BS EN 1936: Natural Stone Test Methods. Determination of Real Density and Apparent Density and of Total and Open Porosity; NP EN 1936:2006; BSI: London, UK, 2007.
[17] C.Y. Heah, H. Kamarudin, A.M. Mustafa Al Bakri, M. Binhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, Y.M. Liew, “Effect of Curing Profile on Kaolin-based Geopolymers,” Phys. Procedia., vol. 22, pp. 305-311, 2011.
[18] A. Soultana, A. Valouma, G. Bartzas, K. Komnitsas, “Properties of Inorganic Polymers Produced from Brick Waste and Metallurgical Slag,” Minerals, vol. 9, 551, 2019.