Electric Vehicle Market Penetration Impact on Greenhouse Gas Emissions for Policy-Making: A Case Study of United Arab Emirates
References:
[1] P. Vine, and I. A. Abed, United Arab Emirates: a new perspective, Trident Press, United Kingdom, 2001.
[2] International Energy Agency (IEA), World Energy Outlook 2014, 2014.
[3] S. Shafiee, and E. Topal, “When will fossil fuel reserves be diminished?,” Energy Policy, vol. 37, pp. 181-189, Jan. 2009.
[4] S. L. Koh, and Y. S. Lim, “Meeting energy demand in a developing economy without damaging the environment—A case study in Sabah, Malaysia, from technical, environmental and economic perspectives,” Energy Policy, vol. 38, pp. 4719-4728, Aug. 2010.
[5] V. Crastan, Global Energy Demand and 2-degree Target, Report, 2014, Springer International Publishing, Switzerland, 2014.
[6] International Energy Agency (IEA), World energy outlook, 2007.
[7] U.S. Energy Information Administration (US EIA), Department of Energy, United States of America, United Arab Emirates, International Energy Data and Analysis, 2015.
[8] E. S. Rubin, C. Chen, and A. B. Rao, “Cost and performance of fossil fuel power plants with CO2 capture and storage,” Energy Policy, vol. 35, pp. 4444-4454, Sept. 2007.
[9] A. Zecca, and L. Chiari, “Fossil-fuel constraints on global warming,” Energy Policy, vol. 38, pp. 1-3, Jan. 2010.
[10] M. Höök, and X. Tang, “Depletion of fossil fuels and anthropogenic climate change—A review”, Energy Policy, vol. 52, pp. 797-809, Jan. 2013.
[11] U.S. Energy Information Administration (US EIA), Department of Energy, United States of America, EIA Electricity, International data, 2010.
[12] N. Lior, “Energy resources and use: The present situation and possible sustainable paths to the future,” Energy, vol. 35, pp. 2631-2638, 2010.
[13] U. K. Rout, Modelling of endogenous technological learning of energy, University of Stuttgart, Stuttgart, Germany, 2007.
[14] United Nations, Japan, 1998. Kyoto protocol to the United Nations framework convention on climate change. Framework convention on climate change. Conference of the Parties, France, 2015.
[15] J. Houghton, “Global warming,” Reports on Progress in Physics, vol. 68, pp. 1343-1403, May 2005.
[16] I. Dincer, A. Midilli, A. Hepbasli, and T. K. Hikmet, Global Warming: Engineering Solutions, New York: Springer, United States of America, 2010.
[17] F. Gaioli, and G. Dutt, “Coping with climate change,” Economical & Political Weekly, vol. 42, pp. 4239-4250, Oct. 2007.
[18] International Government Panel on Climate Change, IPCC, Climate change 2013: The physical science basis, 2013.
[19] The National UAE, 2013. UAE released 200m tonnes of greenhouse gases in 2013. http://www.thenational.ae/uae/environment/uae-released-200m- tonnes-of-greenhouse-gases-in-2013 (assessed: 25.12.2016).
[20] S. Yedla, and R. M. Shrestha, “Multi-criteria approach for the selection of alternative options for environmentally sustainable transport system in Delhi,” Transportation Research Part A: Policy and Practice, vol. 37, pp. 717-729, Oct. 2003.
[21] G. Pisotoia, Electric and hybrid vehicles: Power sources, models, sustainability infrastructure and the market, Elsevier, Amsterdam, The Netherlands, 2010.
[22] W. Kempton, and S. E. Letendre, “Electric vehicles as a new power source for electric utilities,” Transportation Research Part D: Transport and Environment, vol. 2, pp. 157-175, Sept. 1997.
[23] O. Tremblay, L. A. Dessaint, and A. I. Dekkiche, “A generic battery model for the dynamic simulation of hybrid electric vehicles,” in Proc IEEE Veh. Power and Prop. Conf. VPCC, 2007, pp. 284-289.
[24] A. Sciarretta, M. Back, and L. Guzzella, “Optimal control of parallel hybrid electric vehicles,” IEEE Trans. on Control Systems Tech., vol. 12, pp. 352-363, May 2007.
[25] A. Emadi, J. L. Lee, and K. Rajashekara, “Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles,” IEEE Trans. on Industrial Electronics, vol. 55, pp. 2237-2245, June 2008.
[26] A. Khaligh, and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art,”, IEEE Trans. on Vehicular Tech., vol. 59, pp. 2806-2814, July 2010.
[27] E. Sortomme, M. M. Hindi, S. D. J. MacPherson, and S. S. Venkata, “Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses,” IEEE Transactions on Smart Grid, vol. 2, pp. 198-205, Mar. 2011.
[28] J. A. P. Lopes, F. J. Soares, and P. M. R. Almeida, “Integration of electric vehicles in the electric power system,” in Proc. of the IEEE, vol. 99, pp. 168-183, Jan. 2011.
[29] L. P. Fernandez, T. G. S. Roman, R. Cossent, C. M. Domingo, and P. Frias, “Assessment of the impact of plug-in electric vehicles on distribution networks,” IEEE Trans. on Power Systems, vol. 26, pp. 206-213, Feb. 2011.
[30] S. W. Hadley, and A. A. Tsvetkova, “Potential impacts of plug-in hybrid electric vehicles on regional power generation,” The Electricity Journal, vol. 22, pp. 56-68, Dec. 2009.
[31] L. Lua, X. Hana, J. Lia, J. Huab, and M. Ouyanga, “A review on the key issues for lithium-ion battery management in electric vehicles,”, Journal of Power Sources, vol. 226, pp. 272-288, Mar. 2013.
[32] L. Schlapbach, and A. Züttel, “Hydrogen-storage materials for mobile applications,” Nature, vol. 414, pp. 353-358, Nov. 2001.
[33] J. Larminie, and A. Dicks, Fuel cell systems explained, John Wiley & Sons Ltd, England, United Kingdom, 2003.
[34] C. E. Thomas, “Fuel cell and battery electric vehicles compared,” International Journal of Hydrogen Energy, vol. 34, pp. 6005-6020, Aug. 2009.
[35] F. R. Salmasi, “Control strategies for hybrid electric vehicles: evolution, classification, comparison, and future trends,” IEEE Trans. on Vehicular Tech., vol. 56, pp. 2393-2404, Sept. 2007.
[36] L. Turcksina, C. Macharis, K. Lebeau, F. Boureima, J. V. Mierlo, S. Bram, J. D. Ruyck, L. Mertens, J. M. Jossart, L. Gorissen, and L. Pelkmans, “A multi-actor multi-criteria framework to assess the stakeholder support for different biofuel options: The case of Belgium,” Energy Policy, vol. 39, pp. 200-214, Jan. 2011.
[37] N. Lubbe, and U. Sahlin, “Benefits of biofuels in Sweden: A probabilistic re-assessment of the index of new cars’ climate impact”, Applied Energy, vol. 92, pp. 473-479, Apr. 2012.
[38] L. Conti, M. Ferrera, R. Garlaseo, E. Volpi, and G. M. Cornetti, “Rationale of dedicated low emitting CNG cars,” SAE 1993 Transactions: Journal of Fuels & Lubricants - V102-4, 1993.
[39] S. D. Pascoli, A. Femia, and T. Luzzati, “Natural gas, cars and the environment. A (relatively) ‘clean’ and cheap fuel looking for users,” Ecological Economics, vol. 38, pp. 179-189, Aug. 2001.
[40] S. Pischinger, M. Umierski, and B. Hüchtebrock, “New CNG concepts for passenger cars: high torque engines with superior fuel consumption,” Advanced Spark-Ignition Engines and Gaseous Alternative Fuels - SP-1792, 2003.
[41] M. Frick, K. W. Axhausen, G. Carle, and A. Wokaun, “Optimization of the distribution of compressed natural gas (CNG) refueling stations: Swiss case studies,” Transportation Research Part D: Transport and Environment, vol. 12, pp. 10-22, Jan. 2007.
[42] P. Gao, H. W. Kaas, D. Mohr, and D. Wee, “Automotive revolution – perspective towards 2030 How the convergence of disruptive technology-driven trends could transform the auto industry,” Advanced Industries, McKinsey & Company, 2016.
[43] K. T. Chau, and Y. S. Wong, “Overview of power management in hybrid electric vehicles,” Energy Conversion and Management, vol. 43, pp. 1953-1968, Oct. 2002.
[44] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles,” in Proc. of the IEEE, vol. 95, pp. 806-820, Apr. 2007.
[45] Harvard Faculty Research Working Paper, Will Electric Cars Transform the U.S. Market?, 2011.
[46] Harvard Faculty Research Working Paper, Leapfrogging or Stalling Out?, Electric Vehicles in China, 2014.
[47] R. Koh, A. Martin, N. Markiewicz, and A. C. Li, “Australia utilities asia insight: solar & batteries,” Morgan Stanley Research, 2016.
[48] D. A. J. Rand, Batteries for electric vehicles: Electronic & Electrical Engineering Research Studies, Power Sources Technology Series 4, Wiley, United Kingdom, 1997.
[49] Focus2Move. http://focus2move.com (assessed: 25.11.2016).
[50] Organisation Internationale des Constructeurs d ’Automobiles (OICA). http://www.oica.net (assessed: 25.11.2016).
[51] Emirates NBD Research, 2015. UAE’s automotive sector overview. https://www.emiratesnbd.com/plugins/ResearchDocsManagement/Documents/Research/Emirates%20NBD%20Research%20UAE's%20Automotive%20Sector%20Overview%204%20February%202015.pdf (assessed: 05.12.2016).
[52] Bloomberg. http://www.bloomberg.com (accessed: 09.12.2016).
[53] United Nations, 2016. Demographic and social statistics (accessed 10.12.2016)
[54] F. He, Y. Yin, J. Wang, and Y. Yang, “Optimal prices of electricity at public charging stations for plug-in electric vehicles,” Networks and Spatial Economics, vol. 16, pp. 131-154, Mar. 2016.
[55] F. He, D. Wu, Y. Yin, and Y. Guan, “Optimal deployment of public charging stations for plug-in hybrid electric vehicles,” Transportation Part B. Methodological, vol. 47, pp. 87-101, Jan. 2013.
[56] Tesla. https://www.tesla.com (assessed: 25.11.2016).
[57] Dubai Electric and Water Company (DEWA). https://www.dewa.gov.ae/en/customer/innovation/smart-initiatives/electrical-vehicle-charging-stations (assessed: 05.12.2016).
[58] Department of Statistics, Government of Dubai, Vehicles Registered on the Road by Class of Vehicle Until End of The Period - Emirate of Dubai, 2013. https://www.dsc.gov.ae/en-us (assessed: 05.12.2016).
[59] Road and Transport Authority (RTA). https://www.rta.ae com (assessed: 25.11.2016).
[60] Abu Dhabi Water & Electricity Company (ADWEC), United Arab Emirates, Statement of future capacity requirements 2008-2030, 2008.
[61] Abu Dhabi Urban Planning Council, Government of Abu Dhabi, United Arab Emirates, Sustainable development in practice, Review and Analysis 2012, 2012.
[62] TRANSCO, Abu Dhabi Transmission and Dispatch Company, Power Network Development Department Asset Management Directorate, United Arab Emirates, Seven year electricity planning statement from 2014-2020., 2013.