Enhanced Performance of an All-Vanadium Redox Flow Battery Employing Graphene Modified Carbon Paper Electrodes
References:
[1] V. Yufit, B. Hale, M. Matian, P. Mazur, and N. P. Brandon, “Development of a regenerative hydrogen-vanadium fuel cell for energy storage applications,” J. Electrochem. Soc., vol. 160, no. 6, pp. A856-A861, March 2013.
[2] C. L. Chen, H. K. Yeoh, and M. H. Chakrabarti, “One Dimensional Mathematical Modelling of the All-Vanadium and Vanadium/Oxygen Redox Flow Batteries,” ECS Trans., vol. 66, no. 10, pp. 1-23, 2015.
[3] M. H. Chakrabarti, N. P. Brandon, S. A. Hajimolana, F. Tariq, V. Yufit, M. A. Hashim, M. A. Hussain, C. T. J. Low, and P. V. Aravind, “Application of carbon materials in redox flow batteries,” J. Power Sources, vol. 253, pp. 150-166, May 2014.
[4] D. Aaron, Z. Tang, A. B. Papandrew, and T. A. Zawodzinski, “Polarization curve analysis of all-vanadium redox flow batteries,” J. Appl. Electrochem., vol. 41, pp. 1175–1182, Oct. 2011.
[5] D. S. Aaron, Q. Liu, Z. Tang, G. M. Grim, A. B. Papandrew, A. Turhan, T. A. Zawodzinski, and M. M. Mench, “Dramatic performance gains in vanadium redox flow batteries through modified cell architecture,” J. Power Sources, vol. 206, pp. 450–453, May 2012.
[6] Q. Zheng, F. Xing, X. Li, T. Liu, Q. Lai, G. Ning, and H. Zhang, “Investigation on the performance evaluation method of flow batteries,” J. Power Sources, vol. 266, pp. 145–149, Nov. 2014.
[7] Q. H. Liu, G. M. Grim, A. B. Papandrew, A. Turhan, T. A. Zawodzinski, and M. M. Mench,” High Performance Vanadium Redox Flow Batteries with Optimized Electrode Configuration and Membrane Selection,” J. Electrochem. Soc., vol. 159, no. 8, pp. A1246–A1252, July 2012.
[8] M. P. Manahan, Q. H. Liu, M. L. Gross, and M. M. Mench, “Carbon nanoporous layer for reaction location management and performance enhancement in all-vanadium redox flow batteries,” J. Power Sources, vol. 222, pp. 498-502, Jan. 2013.
[9] P. Han, Y. Yue, Z. Liu, W. Xu, L. Zhang, H. Xu, S. Dong, and G. Cui, “Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries,” Energy Environ. Sci., vol. 4, no. 11, pp. 4710–4717, 2011.
[10] M. H. Chakrabarti, C. T. J. Low, N. P. Brandon, V. Yufit, M. A. Hashim, M. F. Irfan, J. Akhtar, E. Ruiz-Trejo, and M. A. Hussain, “Progress in the electrochemical modification of graphene-based materials and their applications,” Electrochim. Acta, vol. 107, pp. 425-440, Sept. 2013.
[11] B. Chakrabarti, D. Nir, V. Yufit, F. Tariq, J. Rubio-Garcia, R. Maher, A. Kucernak, P. V. Aravind, and N. Brandon, “Performance Enhancement of Reduced Graphene Oxide-Modified Carbon Electrodes for Vanadium Redox-Flow Systems,” ChemElectroChem, vol. 4, pp. 194-200, 2017.
[12] Q. Xu, T. S. Zhao, and C. Zhang, “Performance of a vanadium redox flow battery with and without flow fields,” Electrochim. Acta, vol. 142, pp. 61-67, Oct. 2014.
[13] W. Chartarrayawadee, S. E. Moulton, D. Li, C. O. Too, and G. G. Wallace, “Novel composite graphene/platinum electro-catalytic electrodes prepared by electrophoretic deposition from colloidal solutions,” Electrochim. Acta, vol. 60, pp. 213-223, Jan. 2012.
[14] A. Di Blasi, N. Briguglio, O. Di Blasi, and V. Antonucci, “Charge–discharge performance of carbon fiber-based electrodes in single cell and short stack for vanadium redox flow battery,” Appl. Energy, vol. 125, pp. 114-122, July 2014.
[15] A. Chavez-Valdez, M. S. P. Shaffer, and A. R. Boccaccini, “Applications of Graphene Electrophoretic Deposition. A Review,” J. Phys. Chem. B, vol. 117, no. 6, pp. 1502-1515, 2013.