References:
[1] S. R. Pereira, D. J. Portugal-Nunes, D. V. Evtuguin, L. S. Serafim, and A. M. R. B. Xavier, “Advances in ethanol production from hardwood spent sulphite liquors,” Process Biochemistry, vol. 48, no. 2, pp. 272–282, Feb. 2013.
[2] V. Novy, S. Krahulec, K. Longus, M. Klimacek, and B. Nidetzky, “Co-fermentation of hexose and pentose sugars in a spent sulfite liquor matrix with genetically modified Saccharomyces cerevisiae,” Bioresource Technology, vol. 130, pp. 439–448, Feb. 2013.
[3] A. M. R. B. Xavier, M. F. Correia, S. R. Pereira, and D. V. Evtuguin, “Second-generation bioethanol from eucalypt sulphite spent liquor,” Bioresource Technology, vol. 101, no. 8, pp. 2755–2761, Apr. 2010.
[4] D. L. A. Fernandes, C. M. Silva, A. M. R. B. Xavier, and D. V. Evtuguin, “Fractionation of sulphite spent liquor for biochemical processing using ion exchange resins,” Journal of Biotechnology, vol. 162, no. 4, pp. 415– 421, Dec. 2012.
[5] M. Weissgram, Ch. Herwig, and H. K. Weber, “Biotechnological Generation of Value Added Products from Spent Pulping Liquors: Assessing the Potential of Extremophiles,” J. Bioprocessing and Biotechniques, vol. 5, no. 7, pp. 1-14, July 2015.
[6] T. Llano, C. Rueda, N. Quijorna, A. Blanco, and A. Coz, “Study of the delignification of hardwood chips in a pulping process for sugar production,” Journal of Biotechnology, vol. 162, no. 4, pp. 422– 429, Dec. 2012.
[7] S. R. Pereira, Š. Ivanuša, D. V. Evtuguin, L. S. Serafim, and A. M. R. B. Xavier, “Biological treatment of eucalypt spent sulphite liquors: A way to boost the production of second generation bioethanol,” Bioresource Technology, vol. 103, no. 1, pp. 131–135, Jan. 2012.
[8] Zh. Guo, and L. Olsson, “Characterization and fermentation of side streams from sulfite pulping,” Process Biochemistry, vol. 49, no. 8, pp. 1231–1237, Aug. 2014.
[9] S. S. Helle, T. Lin, and Sh. J. B. Duff, “Optimization of spent sulfite liquor fermentation,” Enzyme and Microbial Technology, vol. 42, no. 3, pp. 259–264, Feb. 2008.
[10] E. Johansson, T. Brandberg, and C. Larsson, “Influence of cultivation procedure for Saccharomyces cerevisiae used as pitching agent in industrial spent sulphite liquor fermentations,” Journal of Industrial Microbiology and Biotechnology, vol. 38, no. 11, pp. 1787–1792, Nov. 2011.
[11] R. Millati, L. Edebo, and M. J. Taherzadeh, “Performance of Rhizopus, Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolyzates,” Enzyme and Microbial Technology, vol. 36, no. 2-3, pp. 294–300, Feb. 2005.
[12] M. Holmgren, and A. Sellstedt, “Identification of white-rot and soft-rot fungi increasing ethanol production from spent sulfite liquor in co-culture with Saccharomyces cerevisiae,” Journal of Applied Microbiology, vol. 105, no. 1, pp. 134–140, Jul. 2008.
[13] J. A. Ferreira, P. R. Lennartsson, C. Niklasson, M. Lundin, L. Edebo, and M. J. Taherzadeh, “Spent Sulphite Liquor for Cultivation of an Edible Rhizopus SP,” BioResources, vol. 7, no. 1, pp. 173- 188, Nov. 2012.
[14] H. A. El-Enshasy, “Bioprocessing for Value-Added Products from Renewable Resources: New Technologies and Applications, Chapter 9. Filamentous Fungal Cultures – Process Characteristics, Products, and Applications,” ISBN: 978-0-444-52114-9, 2007, p. 225.
[15] K. Karimi, G. Emtiazi, and M. J. Taherzadeh, “Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae,” Enzyme and Microbial Technology, vol. 40, no. 1, pp. 138–144, Dec. 2006.
[16] J. A. Ferreira, P. R. Lennartsson, and M. J. Taherzadeh, “Production of Ethanol and Biomass from Thin Stillage Using Food-Grade Zygomycetes and Ascomycetes Filamentous Fungi,” Energies, vol. 7, no. 6, pp. 3872-3885, June 2014.
[17] V. Bátori, J. A. Ferreira, M. J. Taherzadeh, and P. R. Lennartsson, “Ethanol and Protein from Ethanol Plant By-Products Using Edible Fungi Neurospora intermedia and Aspergillus oryzae,” BioMed Research International, 2015, to be published.
[18] M. J. Taherzadeh, M. Fox, H. Hjorth, and L. Edebo, “Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae,” Bioresource Technology, vol. 88, no. 3, pp. 167–177, Jul. 2003.
[19] E. Casey, M. Sedlak, N. W. Y. Ho and N. S. Mosier, “Effect of acetic acid and pH on the co-fermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae,” FEMS Yeast Research, vol. 10, no. 4, pp. 385–393, June 2010.
[20] W. Zheng-yun, D. Yu, T. Li, L. Yue-hong, Z. Yi-jie, and Zh. Wen-xue, “Investigating the effects of two lignocellulose degradation by-products (furfural and acetic acid) on ethanol fermentations by six ethanologenic yeast strains,” African Journal of Biotechnology, vol. 9, no. 50, pp. 8661-8666, Dec. 2010.
[21] D. Greetham, “Presence of Low Concentrations of Acetic Acid Improves Fermentations using Saccharomyces cerevisiae,” Journal of Bioprocessing and Biotechniques, vol. 5, no. 1, pp. 1-5, Dec. 2014.