References:
[1] Ranjan, K.R. and S.C. Kaushik, Energy, exergy and thermo-economic analysis of solar distillation systems: A review. Renewable and Sustainable Energy Reviews, 2013. 27: p. 709-723.
[2] Kotas, T.J., The exergy method of thermal plant analysis. London ao: Butterworths, 2012.
[3] Cerci, Y., Exergy analysis of a reverse osmosis desalination plant in California. Desalination, 2002. 142(3): p. 257-266.
[4] Eshoul, N.M., et al., Exergy Analysis of a Two-Pass Reverse Osmosis (RO) Desalination Unit with and without an Energy Recovery Turbine (ERT) and Pressure Exchanger (PX). Energies, 2015. 8(7): p. 6910-6925.
[5] El-Emam, R.S. and I. Dincer, Thermodynamic and thermoeconomic analyses of seawater reverse osmosis desalination plant with energy recovery. Energy, 2014. 64: p. 154-163.
[6] Sarai Atab, M., A.J. Smallbone, and A.P. Roskilly, An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation. Desalination, 2016. 397: p. 174-184.
[7] Tsatsaronis, G., Definitions and nomenclature in exergy analysis and exergoeconomics. Energy, 2007. 32(4): p. 249-253.
[8] Bejan, A. and M.J. Moran, Thermal design and optimization. 1996: John Wiley & Sons.
[9] Bejan, A., Advanced engineering thermodynamics. 2006, John Wiley & Sons, Hoboken, NJ
[10] Sharqawy, M.H., S.M. Zubair, and J.H. Lienhard, Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis. Energy, 2011. 36(11): p. 6617-6626.
[11] Aljundi, I.H., Second-law analysis of a reverse osmosis plant in Jordan. Desalination, 2009. 239(1): p. 207-215.
[12] Wijmans, J.G. and R.W. Baker, The solution-diffusion model: a review. Journal of Membrane Science, 1995. 107(1–2): p. 1-21.
[13] Lee, S. and R.M. Lueptow, Membrane rejection of nitrogen compounds. 2001.
[14] Cheryan, M., Ultrafiltration and microfiltration handbook. 1998: CRC press.
[15] R.Rautenbach and R.Albrecht, Membrane Processes. 1981, West Germany: John Wiley and Sons Ltd.
[16] Avlonitis, S.A., M. Pappas, and K. Moutesidis, A unified model for the detailed investigation of membrane modules and RO plants performance. Desalination, 2007. 203(1–3): p. 218-228.
[17] Baker, R.W., Membrane Technology and Applications. 2004, John Wiley & Sons, Ltd., Chichester.
[18] Vince, F., et al., Multi-objective optimization of RO desalination plants. Desalination, 2008. 222(1–3): p. 96-118.
[19] DOW, Design a Reverse Osmosis System: Design Equations and Parameters, Technical Manual 2006.
[20] I. Dincer, M.A.R., Exergy, Energy, Environment and Simulation Development, Exergy Elsever, Oxford, 2007. firs ed.
[21] I. Dincer, M.A.R., Exergy, Thermal Energy Storage Systems and Applications, 2011. Second ed., John Wiley & sons, Oxford.
[22] Sharqawy, H.M., J.H. Lienhard V, and M.S. Zubair, On exergy calculation of seawater with application in desalination systems International Journal of Thermal Sciences, 2011. 50.
[23] Sharqawy, M.H., J.H. Lienhard, and S.M. Zubair, Thermophysical properties of seawater: a review of existing correlations and data. Desalination and Water Treatment, 2010. 16(1-3): p. 354-380.
[24] Vosough, A., et al., Exergy concept and its characteristic. International Journal of Multidisciplinary Sciences and Engineering, 2011. 2(4): p. 47-52.
[25] Al-Weshahi, M.A., A. Anderson, and G. Tian, Exergy efficiency enhancement of MSF desalination by heat recovery from hot distillate water stages. Applied Thermal Engineering, 2013. 53(2): p. 226-233.