Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 31108

Select areas to restrict search in scientific publication database:
Fiber-Reinforced Sandwich Structures Based on Selective Laser Sintering: A Technological View
The demand for an increasing diversification of the product spectrum associated with the current huge customization desire and subsequently the decreasing unit quantities of each production lot is gaining more and more importance within a great variety of industrial branches, e.g. automotive industry. Nevertheless, traditional product development and production processes (molding, extrusion) are already reaching their limits or fail to address these trends of a flexible and digitized production in view of a product variability up to lot size one. Thus, upcoming innovative production concepts like the additive manufacturing technology basically create new opportunities with regard to extensive potentials in product development (constructive optimization) and manufacturing (economic individualization), but mostly suffer from insufficient strength regarding structural components. Therefore, this contribution presents an innovative technological and procedural conception of a hybrid additive manufacturing process (fiber-reinforced sandwich structures based on selective laser sintering technology) to overcome these current structural weaknesses, and consequently support the design of complex lightweight components.
Digital Object Identifier (DOI):


[1] R. Heuss, N. Müller, W. van Sintern, A. Starke, and A. Tschiesner, “Lightweight, heavy impact”, in Advanced Industries, McKinsey & Company, 2012.
[2] S. H. Huang, P. Liu, A. Mokasdar, and L. Hou, “Additive manufacturing and its societal impact: a literature review”, Int. J. Adv. Manuf. Technol., vol. 67, pp. 1191–1203, 2013.
[3] Y. Huang, M.C. Leu, J. Mazumder, and A. Donmez, “Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations”, J. Manuf. Sci. Eng., vol 137, no. 1, pp. 014001–014010, 2015.
[4] J. Kaspar, and M. Vielhaber, “Cross-Component Systematic Approach for Lightweight and Material-Oriented Design”, Proceedings of Nord Design, vol. DS 81, no. 1, pp. 332–341, 2016.
[5] Federal Ministry for Economic Affairs and Energy (BMWi), “Bestandsaufnahme Leichtbau in Deutschland“, in Project I C4-10/15. Berlin: VDI Zentrum Ressourceneffizienz, 2015.
[6] M. A. Carruth, J. M. Allwood, and R. L. Milford, “Reducing CO2 Emissions through Lightweight Design and Manufacturing”, AIP Conf. Proc., pp. 1632–1637, 2011.
[7] P. K. Mallick, “Materials, design, and manufacturing for lightweight vehicles”. Cambridge: Woodhead Publishing Limited, 2010.
[8] T. Campbell, C. Williams, O. Ivanova, and B. Garrett, “Could 3D Printing Change the World? Technologies, Potential, and Implications of Additive Manufacturing”, Washington (DC): Atlantic Council - Strategic Forsight Report, Oct. 2011.
[9] Wohlers Associates, Inc., “History of Additive Manufacturing”, Wohlers Report, 2014.
[10] J. Gausemeier, N. Echterhoff, M. Kokoschka, and M. Wall, “Thinking ahead the Future of Additive Manufacturing – Analysis of Promising Industries”, University of Paderborn, 2011.
[11] Verein Deutscher Ingenieure, VDI-Guideline 3405: Additive manufacturing processes: Basics, definitions, processes. Düsseldorf: VDI-Verlag, 2014.
[12] I. Gibson, D.W. Rosen, and B. Stucker, “Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing”, New York, Springer, 2010.
[13] M. Schmid, „Selektives Lasersintern (SLS) mit Kunststoffen: Technologie, Prozess und Werkstoffe“, München: Hanser Verlag, 2015.
[14] S. Ford, M. Despeisse, “Additive manufacturing and sustainability: an exploratory study”, Journal of Cleaner Production, pp. 3-4, 2016.
[15] S. Kuma, and J-P Kruth, “Composites by rapid prototyping technology”, in Materials and Design, vol. 31, pp. 850–856, 2010.
[16] W. Zhong et al., “Short fiber reinforced composites for fused deposition modeling”, Mater. Sci. Eng., vol. 301, pp. 125–130, 2001.
[17] R. Matsuzaki et al, “Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation”, Scientific Reports, 6(23058) 2016.
[18] N. Li, Y. Li, and S. Liu, “Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing”, J. Mater. Process Technol., vol. 238, pp. 218–225, 2016.
[19] R. Hornfeck, „Rapid Shaping Prozess zur Herstellung von CFK-Bauteilen“, Schriftenreihe 52: Georg-Ohm-Hochschule Nürnberg, 2013.
[20] S.S. Gill, and M. Kaplas, “Comparative Study of 3D Printing Technologies for Rapid Casting of Aluminium Alloy”, Mater. Manuf. Process, vol. 24, no. 12, pp. 1405–1411, 2009.
[21] Fraunhofer Institute for Production Technology IPT, ”3D meets FRP: More flexibility for highly stressed components”, Press release / 7.3.2016
[22] J. Kaspar, T. Häfele, C. Kaldenhoff, J. Griebsch, and M. Vielhaber, “Hybrid Additive Design of FRP Components – Fiber-Reinforced Sandwich Structures Based on Selective Laser Sintering Technology”, Procedia CIRP, vol. 60, pp. 235–240, 2017.
[23] J. Kaspar, and M. Vielhaber, “Fiber-Reinforced Composite Design Within a LMOD process”, accepted at 21th ICED, Vancouver: 21.-25.08.2017.
Vol:15 No:03 2021Vol:15 No:02 2021Vol:15 No:01 2021
Vol:14 No:12 2020Vol:14 No:11 2020Vol:14 No:10 2020Vol:14 No:09 2020Vol:14 No:08 2020Vol:14 No:07 2020Vol:14 No:06 2020Vol:14 No:05 2020Vol:14 No:04 2020Vol:14 No:03 2020Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007