Gyrotactic Microorganisms Mixed Convection Nanofluid Flow along an Isothermal Vertical Wedge in Porous Media
References:
[1] P. Keblinski, S.R. Phillpot, S.U.-S. Choi, J.A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer 45 (4) (2002) 855–863.
[2] U. S. U. Choi, Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D.A., Wang H.P. (eds.), Developments and Applications of Non-Newtonian Flows, ASME FED, 231/MD 66 (1995) 99–105.
[3] A. Mahdy, S. E. Ahmed, Laminar free convection over a vertical wavy surface embedded in a porous medium saturated with a nanofluid. Transp. Porous Med. 91 (2012) 423–435.
[4] W. Duangthongsuk, S. Wongwises, Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid. Int. Commun. Heat Mass Transf. 35 (2008) 1320–1326.
[5] D. A. Nield, A. V. Kuznetsov, The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 52 (2009) 5792-5795.
[6] P. Cheng, W. J. Minkowycz, Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. J. Geophys. Res. 28 (1977) 2040-2044.
[7] J. Buongiorno, Convective transport in nanofluids. ASME J. Heat Transf. 128 (2006) 240–250.
[8] S. Lee, S. U. S. Choi, S. Li, J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J. Heat Transfer Trans (1999) 121-280.
[9] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, L. J. Thompson, Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78 (2001) 718–720.
[10] W. A. Khan, I. Pop, Free convection boundary layer flow past a horizontal flat plate embedded in a porous medium filled with a nanofluid. ASME J. Heat Transf. 133 (2011) 094501-1.
[11] E. Abu-Nada, Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step, Int. J. Heat Fluid Flow 29 (2008) 242–249.
[12] R. K. Tiwari, M. K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50 (2007) 2002-2018.
[13] S. Kakać, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transf. 52 (2009) 3187–3196.
[14] D. Wen, G. Lin, S. Vafaei, K. Zhang, Review of nanofluids for heat transfer applications, Particuology 7 (2011) 141–150.
[15] P. M. Congedo, S. Collura, Modeling and analysis of natural convection heat transfer in nanofluids. In: Proc ASME Summer Heat Transfer Conf. 3 (2009) 569–579.
[16] A. Chamkha, S. R. G. Rama, G. Kaustubh, Non-similar Solution for Natural Convective Boundary Layer Flow Over a Sphere Embedded in a Porous Medium Saturated with a Nanofluid. Transp. Porous Med. 86 (2011) 13–22.
[17] M. A. A. Hamad, I. Pop, A. I. Ismail, Magnetic field effects on free convection flow of a nanofluid past a semi-infinite vertical flat plate. Nonlinear Analysis: Real World Appl. 12 (2011) 1338–1346.
[18] D. A. Nield, A. V. Kuznetsov, Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model. Transp. Porous media 81 (2010) 409–422.
[19] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43 (2000) 3701-3707.
[20] A. J. Chamkha, A. M Aly, H. Al-Mudhaf, Laminar MHD mixed convection flow of a nanofluid along a stretching permeable surface in the presence of heat generation or absorption effects. Int. J. Microscale Nanoscale Thermal Fluid Transp. Phenom. 2 (2011).
[21] M. Kumari, G. Nath, Radiation effect on mixed convection from a horizontal surface in a porous medium. Mech. Res. Commun. 31 (2004) 483–491.
[22] D. A. Nield, A. Bejan, Convection in Porous Media. 2nd edn. Springer, New York (2006).
[23] C-Y. Cheng, Soret Dufour effects on mixed convection heat and mass transfer from a vertical wedge in a porous medium with constant wall temperature and concentration, Transp. Porous Med. 94 (2012) 123-132.
[24] K. A. Yih, Radiation effect on mixed convection over an isothermal wedge in porous media: the entire regime. Heat Transf. Eng. 22 (2001) 26–32.
[25] J. C. Hsieh, T. S. Chen, B. F. Armaly, Mixed convection along a non-isothermal vertical plate embedded in a porous medium: the entire regime. Int. J. Heat Mass Transf. 36 (1993) 1819–1825.
[26] P. Geng, A. V. Kuznetsov, Settling of bidispersed small solid particles in a dilute suspension containing gyrotactic microorganisms. Int. J. Eng. Sci. 43 (2005) 992-1010.
[27] P. Geng, A. V. Kuznetsov, Effect of small solid particles on the development of bioconvection plumes. Int. Commun. Heat Mass Transfer 31 (2004) 629-638.
[28] P. Geng, A. V. Kuznetsov, Introducing the concept of effective diffusivity to evaluate the effect of bioconvection on small solid particles. Int. J. Transp. Phenom. 7 (1995) 321–338.
[29] W. A. Khan, M. J. Uddin, A. I. Ismail, Free convection of non-Newtonian nanofluids in porous media with gyrotactic microorganisms. Transp Porous Med. 97 (2013) 241–252.
[30] A. J. Hillesdon, T. j. Pedley, Bioconvection in suspensions of oxytactic bacteria: linear theory. J. Fluid Mech. 324 (1996) 223-259.
[31] A. Aziz, W. a. Khan, I. Pop, Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms. Int. J. Thermal Sci. 56 (2012) 48–57.
[32] S. M. Becker, A. V. Kuznetsov, A. A. Avramenko, Numerical modeling of a falling bioconvection plume in a porous medium. Fluid Dyn. Res. 33 (2004) 323-339.
[33] W. N. Mutuku, O. D. Makinde, Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms. Computers & Fluids 95 (2014) 88–97.
[34] S. Childress, M. Levandowsky, E. A. Spiegel, Pattern formation in a suspension of swimming microorganisms – equations and stability theory. J. Fluid Mech. 69 (1975) 591–613.
[35] A. A. Avramenko, A. V. Kuznetsov, Stability of a suspension of gyrotactic microorganisms in superimposed fluid and porous layers. Int. Commun. Heat Mass Transfer 31 (2004) 1057–1066.
[36] A. V. Kuznetsov, The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int. Commun. Heat Mass Transf. 37 (2010) 1421–1425.
[37] W. A. Khan, O. D. Makinde, Z. H. Khan, MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip. Int. J. Heat Mass Transf. 74 (2014) 285–291.
[38] A. Mahdy, Natural convection boundary layer flow due to gyrotactic microorganisms about a vertical cone in porous media saturated by a nanofluid. J. Braz. Soc. Mech. Sci. Eng. 38 (2016) 67-76.
[39] S. E. Ahmed, A. Mahdy, Laminar MHD natural convection of nanofluid containing gyrotactic microorganisms over vertical wavy surface saturated non-Darcian porous media, Applied Mathematics and Mechanics 37 (2016) 471-484.
[40] A. V. Kuznetsov, The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension of oxytactic microorganisms. Eur. J. Mech. – B/Fluids 25 (2006) 223–233.
[41] A. V. Kuznetsov, Bio-thermal convection induced by two different species of microorganisms. Int. Commun. Heat Mass Transf. 38 (2011) 548–553.
[42] A. V. Kuznetsov, Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability. Nanoscale Res. Lett. 6 (2011) 1-13.
[43] T. Cebeci, P. Bradshaw, Physical and computational aspects of convective heat transfer, Berlin-Heidelberg-New york- Springer-Verlag (1984).