Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 31100

Select areas to restrict search in scientific publication database:
Impact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy
The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are significantly dependent on the strain rate and temperature. The flow stress, work hardening rate and strain rate sensitivity all increase with increasing strain rate or decreasing temperature. It is shown that the impact response of the Haynes 188 specimens is adequately described by the Zerilli-Armstrong fcc model. The fracture analysis results indicate that the Haynes 188 specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed Haynes 188 specimens are characterised by dimple- and / or cleavage-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point.
Digital Object Identifier (DOI):


[1] Haynes alloy 188, Report-Haynes International, Inc., Kokomo, TN, 1991.
[2] G. R. Halford, J. F. Saltsman, S. Kalluri, " High Temperature Fatigue Behaviour of Haynes 188,”edited by R. J. Richmond and S. T. Wu., Proc. Advanced Earth-to-Orbit Propulsion Technology Conf., MSFC, Huntsville, AL, NASA CP-3012, NASA, Washington, DC, 18-988, May 10-13, 1988, pp. 497-507.
[3] S. Y. Lee, Y. L. Lu, P. K. Liaw, H. Choo, S. A. Thompson, J. W. Blust, P. F. Browning, A. K. Bhattacharaya, J. M. Aurrecoechea and D. L. Klarstrom, "High-temperature tensile-hold crack-growth behaviorof HASTELLOY® X alloy compared to HAYNES® 188and HAYNES® 230® alloys,” Mech. Time-Depend. Mate. 12, 31-44 (2008).
[4] P. J. Bonacuse and S. Kalluri,”Elevated Temperature Axial and Torsional Fatigue Behavior of Haynes 188,”J. Eng. Mater. Tech. 117, 191-199 (1995).
[5] S. Nemat-Nasser, Y. F. Li, J.B. Isaacs,”Experimental/ computational evaluation of flow stress at high strain rates with application to adiabatic shear banding,” Mech. Mater. 17,111-134(1994).
[6] M.A. Meyers, Y.J. Chen, F.D.S.Marguis and D.S. Kim,” High-strain, high strain-rate behavior of tantalum” Metall. Mater. Trans. A26, 2493-2501 (1995).
[7] A. G. Odeshi and M. N. Bassim,"High strain-rate fracture and failure of a high strength low alloy steel in compression," Mater. Sci. Eng. A 525, 96-101(2009).
[8] WR. C. Batra and D. Liu,"Adiabaticshear banding in plane strain problems," ASME J. Appl. Mech. 56, 527-534(1989).
[9] L. E. Murr, A. C. Ramirez, S. M. Gaytan,M. I. Lopez,E. Y. Martinez,D. H. Hernandez and E. Martinez, "Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti–6Al–4V targets,” Mater. Sci. Eng. A 516, 205-216(2009).
[10] U.S. Lindholm,” Some experiments with the split hopkinson pressure bar∗,” J. Mech. Phys. Sol. 12, 317-335 (1964).
[11] W. S. Lee and C. F. Lin,”Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures,” Mater. Sci. Eng. A. 241,48-59(1998).
[12] P. S. Follansbee and U. F. Kocks,” A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable,”Acta Metall. 36, 81-93(1988).
[13] W. G. Guo and S. Nemat-Nasser,”Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures.”Mech. Mater. 38, 1090-1103 (2006).
[14] J. Litonski,” Plastic Flow of a Tube Under Adiabatic Torsion,” Bull. Acad. Pol. Sci. Ser. Sci. Technol. 25, 7–14(1977).
[15] F. J. Zerilli and R. W. Armstrong,” Dislocation-mechanics based constitutive relations for material dynamics calculations,"J. Appl. Phys.61(5), 1816-1825 (1987).
[16] S. R. Bodner, and Y. Partom,” Constitutive equations for elastic strain-hardening meterials,”J. Appl. Mech. 385-389(1975).
[17] A. S. Khan, Y. S. Suh and R. Kazmi,” Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys,”Int. J. Plasticity 20, 2233-2248(2004).
Vol:15 No:03 2021Vol:15 No:02 2021Vol:15 No:01 2021
Vol:14 No:12 2020Vol:14 No:11 2020Vol:14 No:10 2020Vol:14 No:09 2020Vol:14 No:08 2020Vol:14 No:07 2020Vol:14 No:06 2020Vol:14 No:05 2020Vol:14 No:04 2020Vol:14 No:03 2020Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007