Impact of Process Parameters on Tensile Strength of Fused Deposition Modeling Printed Crisscross Poylactic Acid
References:
[1] C. K. Chua, K. F. Leong, 3D printing and additive manufacturing: principles and applications of rapid prototyping, World Scientific Publishing Co Inc., 2014.
[2] I. Gibson, D. W. Rosen, B. Stucker, Additive manufacturing technologies, New York: Springer, 2010.
[3] R. D. Goodridge, M. L. Shofner, R. J. M. Hague, M. McClelland, M. R. Schlea, R. B. Johnson, and C. J. Tuck, “Processing of a olyamide-12/carbon nanofibre composite by laser sintering,” Polymer Testing, vol. 30, 2011, pp. 94-100.
[4] M. Baumers, P. Dickens, C. Tuck, and R. Hague, “The cost of additive manufacturing: machine productivity, economies of scale and technology-push,” Technol. Forecast. Soc. Change, vol. 102, 2016, pp. 193-201.
[5] N. Aliheidari, R. Tripuraneni, A. Ameli, and S. Nadimpalli, “Fracture resistance measurement of fused deposition modeling 3D printed polymers,” Polymer Testing, vol. 60, 2017, pp. 94-101.
[6] L. Wang, W. M. Gramlich, and D. J. Gardner, “Improving the impact strength of Poly (lactic acid) (PLA) in fused layer modeling (FLM),” Polymer, vol. 114, 2017, pp. 242-248.
[7] Y. Song, Y. Li, W. Song, K. Yee, K. Y. Lee, and V. L. Tagarielli, “Measurements of the mechanical response of unidirectional 3D-printed PLA,” Materials & Design, vol. 123, 2017, pp. 154-164.
[8] J. M. Chacón, M. A. Caminero, E. García-Plaza, and P. J. Núñez, “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection,” Materials & Design, vol. 124, 2017, pp. 143-157.
[9] X. Liu, M. Zhang, S. Li, L. Si, J. Peng, and Y. Hu, “Mechanical property parametric appraisal of fused deposition modeling parts based on the gray Taguchi method,” The International Journal of Advanced Manufacturing Technology, vol. 89, 2017, pp. 2387-2397.
[10] M. S. Uddin, M. F. R. Sidek, M. A. Faizal, R. Ghomashchi, and A. Pramanik, “Evaluating Mechanical Properties and Failure Mechanisms of Fused Deposition Modeling Acrylonitrile Butadiene Styrene Parts. Journal of Manufacturing Science and Engineering,” vol. 139, 2017, pp.081018-1-12
[11] O. S. Carneiro, A. F. Silva, and R. Gomes, “Fused deposition modeling with polypropylene,” Materials & Design, vol. 83, 2015, pp. 768-776.
[12] K. Chockalingam, N. Jawahar, and J. Praveen, “Enhancement of anisotropic strength of fused deposited ABS parts by genetic algorithm” Materials and Manufacturing Processes, vol. 31, 2016, pp. 2001-2010.
[13] K. P. Motaparti, G. Taylor, M. C. Leu, K. Chandrashekhara, J. Castle, and M. Matlack, “Experimental investigation of effects of build parameters on flexural properties in fused deposition modelling parts,” Virtual and Physical Prototyping, 2017, pp. 1-14.
[14] A. Garg, A. Bhattacharya, and A. Batish, “Failure investigation of fused deposition modelling parts fabricated at different raster angles under tensile and flexural loading,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 231, 2017, pp. 2031-2039.
[15] M. Syamsuzzaman, N. A. Mardi, M. Fadzil, and Y. Farazila, “Investigation of layer thickness effect on the performance of low-cost and commercial fused deposition modelling printers,” Materials Research Innovations, vol. 18, 2014, pp. S6-485.
[16] J. Cantrell, S. Rohde, D. Damiani, R. Gurnani, L. DiSandro, J. Anton, A. Young, A. Jerez, D. Steinbach, C. Kroese, and P. Ifju, “Experimental Characterization of the Mechanical Properties of 3D Printed ABS and Polycarbonate Parts,” In Advancement of Optical Methods in Experimental Mechanics, vol. 3, 2017, pp. 89-105.
[17] N. Hill, and M. Haghi, “Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate,” Rapid Prototyping Journal, vol. 20, 2014, pp. 221-227.
[18] H. Rezayat, W. Zhou, A. Siriruk, D. Penumadu, and S. S. Babu, “Structure–mechanical property relationship in fused deposition modelling,” Materials Science and Technology, vol. 31, 2015, pp. 895-903.
[19] J. C. Riddick, M. A. Haile, R. Von Wahlde, D. P. Cole, O. Bamiduro, and T. E. Johnson, “Fractographic analysis of tensile failure of acrylonitrile-butadiene-styrene fabricated by fused deposition modeling,” Additive Manufacturing, vol. 11, 2016, pp. 49-59.
[20] I. Durgun, and R. Ertan, “Experimental investigation of FDM process for improvement of mechanical properties and production cost,” Rapid Prototyping Journal, vol. 20, 2014, pp. 228-235.
[21] N. G. Tanikella, B. Wittbrodt, and J. M. Pearce, “Tensile strength of commercial polymer materials for fused filament fabrication 3D printing,” Additive Manufacturing, vol. 15, 2017, pp. 40-47.
[22] B. M. Tymrak, M. Kreiger, and J. M. Pearce, “Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions,” Materials & Design, vol. 58, 2014, pp. 242-246.
[23] S. Ziemian, M. Okwara, and C. W. Ziemian, “Tensile and fatigue behavior of layered acrylonitrile butadiene styrene,” Rapid Prototyping Journal, vol. 21, 2015, pp. 270-278