Implementation of Quantum Rotation Gates Using Controlled Non-Adiabatic Evolutions
References:
[1] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum
Information, Optical Science, Springer, 2004.
[2] E. Farhi, J. Goldstoen, S. Gutmann, J. Lapan, A. Lundgren, D. Preda,
A quantum adiabatic evolution algorithm applied to random instances
of np-coplete problem, Science 292 (2001) 472.
[3] D. Aharonov, W. Van Dam, J. Kempe, Z. Landau, S. Lloyd, O. Regev,
Adiabatic quantum computation is equivalent to standard quantum
computation, SIAM Journal on Computing 37 (1) (2007) 166–194.
[4] A. Messiah, Quantum mechanics: two volumes bound as one, Dover
Books on Physics, Dover, Mineola, NY, 2014.
[5] D. J. Griffiths, Introduction to quantum mechanics, Pearson Education
India, 2005.
[6] M. Johansson, E. Sj¨oqvist, L. M. Andersson, M. Ericsson, B. Hessmo,
K. Singh, D. M. Tong, Robustness of nonadiabatic holonomic gates,
Phys. Rev. A 86 (2012) 062322.
[7] A. Abdumalikov Jr, J. Fink, K. Juliusson, M. Pechal, S. Berger,
A. Wallraff, S. Filipp, Experimental realization of non-abelian
non-adiabatic geometric gates, Nature 496 (7446) (2013) 482–485.
[8] V. A. Mousolou, C. M. Canali, E. Sjqvist, Universal non-adiabatic
holonomic gates in quantum dots and single-molecule magnets, New
Journal of Physics 16 (1) (2014) 013029.
[9] C. Zu, W.-B. Wang, L. He, W.-G. Zhang, C.-Y. Dai, F. Wang, L.-M.
Duan, Experimental realization of universal geometric quantum gates
with solid-state spins, Nature 514 (7520) (2014) 72–75.
[10] G. Xu, C. Liu, P. Zhao, D. Tong, Nonadiabatic holonomic gates realized
by a single-shot implementation, Physical Review A 92 (5) (2015)
052302.
[11] I. Hen, Quantum gates wih controlled adiabatic evolutions, Phys. Rev.
A 91 (2015) 022309.
[12] H.-P. Breuer, F. Petruccione, The theory of open quantum systems,
Oxford University Press on Demand, 2002.
[13] Z. Ficek, M. R. Wahiddin, Quantum Optics for Beginners, Pan Stanford
Publishing, 2014.
[14] H. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical
Fields, no. v. 2 in Theoretical and Mathematical Physics, Springer, 2009.
[15] J. Dalibard, Y. Castin, K. Mølmer, Wave-function approach to dissipative
processes in quantum optics, Phys. Rev. Lett. 68 (1992) 580–583.
[16] Y. Castin, J. Dalibard, Monte carlo wave-function method in quantum
optics, J. Opt. Soc. Am. B 10 (1993) 524–538.
[17] M. B. Plenio, P. L. Knight, The quantum-jump approach to dissipative
dynamics in quantum optics, Rev. Mod. Phys. 70 (1998) 101–144.