Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 31103

Select areas to restrict search in scientific publication database:
Large Strain Compression-Tension Behavior of AZ31B Rolled Sheet in the Rolling Direction
Being made with the lightest commercially available industrial metal, Magnesium (Mg) alloys are of interest for light-weighting. Expanding their application to different material processing methods requires Mg properties at large strains. Several room-temperature processes such as shot and laser peening and hole cold expansion need compressive large strain data. Two methods have been proposed in the literature to obtain the stress-strain curve at high strains: 1) anti-buckling guides and 2) small cubic samples. In this paper, an anti-buckling fixture is used with the help of digital image correlation (DIC) to obtain the compression-tension (C-T) of AZ31B-H24 rolled sheet at large strain values of up to 10.5%. The effect of the anti-bucking fixture on stress-strain curves is evaluated experimentally by comparing the results with those of the compression tests of cubic samples. For testing cubic samples, a new fixture has been designed to increase the accuracy of testing cubic samples with DIC strain measurements. Results show a negligible effect of anti-buckling on stress-strain curves, specifically at high strain values.
Digital Object Identifier (DOI):


[1] C. Blawert, N. Hort, and K. U. Kainer, “Automotive Applications of Magnesium and Its Alloys,” Magnesium, vol. 57, no. 4, pp. 397–408, 2006.
[2] C. S. Aitchison and L. B. Tuckejuian, “The ‘Pack’ method for compressive tests of thin specimens of materials used in thin-wall structues,” 1939.
[3] C. S. Aitchison, “Extension of Pack Method for Compressive Tests,” Natl. Advis. Comm. Aeronaut., no. 789, 1940.
[4] J. A. Miller, “A fixture for compressive tests of thin sheet metal between lubricated steel guides,” Natl. Advis. Comm. Aeronaut., no. 1022, 1946.
[5] J. N. Kotanchik, W. Woods, and R. A. Weinberger, “Investigation of methods of supporting singlethickness specimens in a fixture for determination of compressive stress–strain curves,” Natl. Advis. Comm. Aeronaut., no. L5E15, 1945.
[6] H. LaTour and D. S. Wolford, “Single-strip compression test for sheet materials,” in ASTM, 1945, pp. 671– 688.
[7] R. L. Templin, “Discussion of single-strip compression test for sheet materials,” in ASTM, 1945, pp. 690– 693.
[8] P. E. Sandorff and R. K. Dillon, “Compressive stress–strain properties of some aircraft materials,” in ASTM, 1946, pp. 1039–1052.
[9] F. Yoshida, T. Uemori, and K. Fujiwara, “Elastic – plastic behavior of steel sheets under in-plane cyclic tension – compression at large strain,” Int. J. Plast., vol. 18, pp. 633–659, 2002.
[10] T. Kuwabara, Y. Morita, Y. Miyashita, and S. Takahashi, “Elastic–plastic behavior of sheet metal subjected to in-plane reverse loading. Proceedings of the Fifth International Symposium on Plasticity and Its Curren,” in Fifth International Symposium on Plasticity and Its Curren, 1995, pp. 841–844.
[11] J. Cao, W. Lee, H. S. Cheng, M. Seniw, H. P. Wang, and K. Chung, “Experimental and numerical investigation of combined isotropic-kinematic hardening behavior of sheet metals,” Int. J. Plast., vol. 25, no. 5, pp. 942–972, 2009.
[12] L. Dietrich, G. Socha, and Z. L. Kowalewski, “Anti-buckling fixture for large deformation tension-compression cyclic loading of thin metal sheets,” An Int. J. Exp. Mech., vol. 50, no. 2, pp. 174–183, 2014.
[13] Z. L. Kowalewski, L. Dietrich, and G. Socha, “Experimental investigation of thin metal sheets under tension-compression cyclic loading 1 Introduction 2 Experimental details,” 8th Australas. Congr. Appl. Mech. ACAM 8, no. November, 2014.
[14] T. Libura, Z. L. Kowalewski, L. Dietrich, and G. Socha, “Anti-buckling System for Flat Specimens Investigations under Cyclic Tension-compression,” Mater. Today Proc., vol. 3, no. 4, pp. 1045–1050, 2016.
[15] Z. L. Kowalewski, L. Dietrich, and G. Socha, “Experimental investigation of thin metal sheets under tension-compression cyclic loading 1 Introduction 2 Experimental details,” 8th Australas. Congr. Appl. Mech. ACAM 8, no. November, pp. 757–762, 2014.
[16] T. Kuwabara, Y. Kumano, J. Ziegelheim, and I. Kurosaki, “Tension-compression asymmetry of phosphor bronze for electronic parts and its effect on bending behavior,” Int. J. Plast., vol. 25, no. 9, pp. 1759–1776, 2009.
[17] R. K. Boger, R. H. Wagoner, F. Barlat, M. G. Lee, and K. Chung, “Continuous, large strain, tension/compression testing of sheet material,” Int. J. Plast., vol. 21, no. 12, pp. 2319–2343, 2005.
[18] M. Omar, T. Kuwabara, and D. Steglich, “Material modeling of AZ31 Mg sheet considering variation of r -values and asymmetry of the yield locus,” Mater. Sci. Eng. A, vol. 549, pp. 82–92, 2012.
[19] M. G. Lee, J. H. Kim, D. Kim, O. S. Seo, N. T. Nguyen, and H. Y. Kim, “Anisotropic Hardening of Sheet Metals at Elevated Temperature: Tension-Compressions Test Development and Validation,” Exp. Mech., vol. 53, no. 6, pp. 1039–1055, 2013.
[20] ASTM Standard E9-09, “Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature,” Annu. B. ASTM Stand., vol. 3.01, no. 1, pp. 92–100, 2012.
[21] J. Kang and K. Gong, “Determination of Fracture Behavior of AA6060 Aluminum Alloy Extrusion Using Digital Image Correlation,” Eval. Exist. New Sens. Technol. Fatigue, Fract. Mech. Test., vol. STP 1584, pp. 13–31, 2015.
[22] W. Muhammad, M. Mohammadi, J. Kang, R. K. Mishra, and K. Inal, “An elasto-plastic constitutive model for evolving asymmetric/anisotropic hardening behavior of AZ31B and ZEK100 magnesium alloy sheets considering monotonic and reverse loading paths,” Int. J. Plast., vol. 70, pp. 30–59, 2015.
[23] D. Ghaffari Tari, M. J. Worswick, U. Ali, and M. A. Gharghouri, “Mechanical response of AZ31B magnesium alloy: Experimental characterization and material modeling considering proportional loading at room temperature,” Int. J. Plast., vol. 55, pp. 247–267, 2014.
[24] L. Dietrich and K. Turski, “A new method of thin sheets testing under compression (in Polish),” Eng. Trans., vol. 26, no. 1, pp. 91–99, 1978.
[25] J. Al Bin Mousa, “Multiaxial Fatigue Characterization and Modeling of AZ31B Magnesium Extrusion,” 2011.
[26] S. B. Behravesh, “Fatigue Characterization and Cyclic Plasticity Modeling of Magnesium Spot-Welds,” University of Waterloo, 2013.
Vol:15 No:03 2021Vol:15 No:02 2021Vol:15 No:01 2021
Vol:14 No:12 2020Vol:14 No:11 2020Vol:14 No:10 2020Vol:14 No:09 2020Vol:14 No:08 2020Vol:14 No:07 2020Vol:14 No:06 2020Vol:14 No:05 2020Vol:14 No:04 2020Vol:14 No:03 2020Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007