Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 31176


Select areas to restrict search in scientific publication database:
10006626
Lithium-Ion Battery State of Charge Estimation Using One State Hysteresis Model with Nonlinear Estimation Strategies
Abstract:
Battery state of charge (SOC) estimation is an important parameter as it measures the total amount of electrical energy stored at a current time. The SOC percentage acts as a fuel gauge if it is compared with a conventional vehicle. Estimating the SOC is, therefore, essential for monitoring the amount of useful life remaining in the battery system. This paper looks at the implementation of three nonlinear estimation strategies for Li-Ion battery SOC estimation. One of the most common behavioral battery models is the one state hysteresis (OSH) model. The extended Kalman filter (EKF), the smooth variable structure filter (SVSF), and the time-varying smoothing boundary layer SVSF are applied on this model, and the results are compared.
Digital Object Identifier (DOI):

References:

[1] M. Farag, M. Fleckenstein, and S. Habibi, “Continuous piecewise-linear, reduced-order electrochemical model for lithium-ion batteries in real-time applications,” Journal of Power Sources, vol. 342, pp. 351–362, feb 2017.
[2] B. Bhangu, P. Bentley, D. Stone, and C. Bingham, “Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles,” IEEE Trans. Veh. Technol., vol. 54, no. 3, pp. 783–794, may 2005.
[3] A. Vasebi, S. Bathaee, and M. Partovibakhsh, “Predicting state of charge of lead-acid batteries for hybrid electric vehicles by extended kalman filter,” Energy Conversion and Management, vol. 49, no. 1, pp. 75–82, jan 2008.
[4] T. Okoshi, K. Yamada, T. Hirasawa, and A. Emori, “Battery condition monitoring (BCM) technologies about lead–acid batteries,” Journal of Power Sources, vol. 158, no. 2, pp. 874–878, aug 2006.
[5] G. L. Plett, “Extended kalman filtering for battery management systems of lipb-based hev battery packs: Part 1. background,” Journal of Power sources, vol. 134, no. 2, pp. 252–261, 2004.
[6] “Extended kalman filtering for battery management systems of lipb-based hev battery packs: Part 2. modeling and identification,” Journal of power sources, vol. 134, no. 2, pp. 262–276, 2004.
[7] “Extended kalman filtering for battery management systems of lipb-based hev battery packs: Part 3. state and parameter estimation,” Journal of power sources, vol. 134, no. 2, pp. 277–292, 2004.
[8] M. Farag, S. Gadsden, S. Habibi, and J. Tjong, “A comparative study of li-ion battery models and nonlinear dual estimation strategies,” in 2012 IEEE Transportation electrification conference and expo (ITEC). IEEE, 2012, pp. 1–8.
[9] M. Farag, M. Fleckenstein, and S. R. Habibi, “Li-ion battery SOC estimation using non-linear estimation strategies based on equivalent circuit models,” in SAE Technical Paper Series. SAE International, apr 2014.
[10] X. Hu, S. Li, and H. Peng, “A comparative study of equivalent circuit models for li-ion batteries,” Journal of Power Sources, vol. 198, pp. 359–367, 2012.
[11] J. Kim, S. Lee, and B. H. Cho, “Complementary cooperation algorithm based on DEKF combined with pattern recognition for SOC/capacity estimation and SOH prediction,” IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 436–451, jan 2012.
[12] B. D. O. Anderson, J. B. Moore, and M. Eslami, “Optimal filtering,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 12, no. 2, pp. 235–236, 1982.
[13] W. L. Brogan, “Applied optimal estimation (arthur gels, ed.),” SIAM Rev., vol. 19, no. 1, pp. 172–175, jan 1977.
[14] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice with MATLAB. JOHN WILEY & SONS INC, 2014. (Online). Available: http://www.ebook.de/de/product/23151381/mohinder s grewal angus p andrews kalman filtering theory and practice with matlab.html
[15] S. Habibi, “The smooth variable structure filter,” Proceedings of the IEEE, vol. 95, no. 5, pp. 1026–1059, may 2007.
[16] M. A. Al-Shabi, S. A. Gadsden, and S. R. Habibi, “The toeplitz-observability smooth variable structure filter,” in 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT). Institute of Electrical & Electronics Engineers (IEEE), dec 2013.
[17] S. A. Gadsden and S. R. Habibi, “A new robust filtering strategy for linear systems,” J. Dyn. Sys., Meas., Control, vol. 135, no. 1, p. 014503, oct 2012.
Vol:15 No:04 2021Vol:15 No:03 2021Vol:15 No:02 2021Vol:15 No:01 2021
Vol:14 No:12 2020Vol:14 No:11 2020Vol:14 No:10 2020Vol:14 No:09 2020Vol:14 No:08 2020Vol:14 No:07 2020Vol:14 No:06 2020Vol:14 No:05 2020Vol:14 No:04 2020Vol:14 No:03 2020Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007