Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 31198


Select areas to restrict search in scientific publication database:
10011884
Malaria Parasite Detection Using Deep Learning Methods
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.
Digital Object Identifier (DOI):

References:

[1] “World malaria report 2019,” p. 232, 2019, Geneva: World Health Organization. (Online). Available: https://www.who.int/malaria/publications/world-malaria-report-2019/en/
[2] N. Tangpukdee, C. Duangdee, P. Wilairatana, and S. Krudsood, “Malaria diagnosis: a brief review,” The Korean journal of parasitology, vol. 47, no. 2, pp. 93–102, 6 2009.
[3] C. M. Hommelsheim, L. Frantzeskakis, M. Huang, and B. U¨ lker, “Pcr amplification of repetitive dna: a limitation to genome editing technologies and many other applications,” Scientific Reports, vol. 4, no. 1, p. 5052, 5 2014.
[4] M. Hawkes, J. P. Katsuva, and C. K. Masumbuko, “Use and limitations of malaria rapid diagnostic testing by community health workers in war-torn democratic republic of congo,” Malaria Journal, vol. 8, no. 1, p. 308, 12 2009.
[5] K. O. Mfuh, O. A. Achonduh-Atijegbe, O. N. Bekindaka, L. F. Esemu, C. D. Mbakop, K. Gandhi, R. G. F. Leke, D. W. Taylor, and V. R. Nerurkar, “A comparison of thick-film microscopy, rapid diagnostic test, and polymerase chain reaction for accurate diagnosis of plasmodium falciparum malaria,” Malaria Journal, vol. 18, pp. 1475–2875, 3 2019.
[6] C. B. Delahunt, C. Mehanian, L. Hu, S. K. McGuire, C. R. Champlin, M. P. Horning, B. K. Wilson, and C. M. Thompon, “Automated microscopy and machine learning for expert-level malaria field diagnosis,” in 2015 IEEE Global Humanitarian Technology Conference (GHTC), 2015, pp. 393–399.
[7] D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image analysis,” Annual Review of Biomedical Engineering, vol. 19, no. 1, pp. 221–248, 2017.
[8] A. Fourcade and R. H. Khonsari, “Deep learning in medical image analysis: A third eye for doctors,” Journal of Stomatology, Oral and Maxillofacial Surgery, vol. 120, no. 4, pp. 279–288, 2019, 55th SFSCMFCO Congress.
[9] L. von Chamier, J. Jukkala, C. Spahn, M. Lerche, S. Hern´andez-P´erez, P. K. Mattila, E. Karinou, S. Holden, A. C. Solak, A. Krull, T.-O. Buchholz, F. Jug, L. A. Royer, M. Heilemann, R. F. Laine, G. Jacquemet, and R. Henriques, “Zerocostdl4mic: an open platform to simplify access and use of deep-learning in microscopy,” bioRxiv, 2020.
[10] T. Falk, D. Mai, R. Bensch, O¨ . C¸ ic¸ek, A. Abdulkadir, Y. Marrakchi, A. B¨ohm, J. Deubner, Z. J¨ackel, K. Seiwald, A. Dovzhenko, O. Tietz, C. Dal Bosco, S. Walsh, D. Saltukoglu, T. L. Tay, M. Prinz, K. Palme, M. Simons, I. Diester, T. Brox, and O. Ronneberger, “U-net: deep learning for cell counting, detection, and morphometry,” Nature Methods, vol. 16, no. 1, pp. 67–70, 1 2019.
[11] L. Shen, L. R. Margolies, J. H. Rothstein, E. Fluder, R. McBride, and W. Sieh, “Deep learning to improve breast cancer detection on screening mammography,” Scientific Reports, vol. 9, no. 1, p. 12495, 8 2019.
[12] S. M. McKinney, M. Sieniek, V. Godbole, J. Godwin, N. Antropova, H. Ashrafian, T. Back, M. Chesus, G. C. Corrado, A. Darzi, M. Etemadi, F. Garcia-Vicente, F. J. Gilbert, M. Halling-Brown, D. Hassabis, S. Jansen, A. Karthikesalingam, C. J. Kelly, D. King, J. R. Ledsam, D. Melnick, H. Mostofi, L. Peng, J. J. Reicher, B. Romera-Paredes, R. Sidebottom, M. Suleyman, D. Tse, K. C. Young, J. De Fauw, and S. Shetty, “International evaluation of an ai system for breast cancer screening,” Nature, vol. 577, no. 7788, pp. 89–94, 1 2020.
[13] WHO, “Malaria microscopy quality assurance manual,” p. 140, 2016. (Online). Available: https://www.who.int/malaria/publications/atoz/9789241549394/en/
[14] K. E. Delas Pe˜nas, P. T. Rivera, and P. C. Naval, “Malaria parasite detection and species identification on thin blood smears using a convolutional neural network,” in 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), 2017, pp. 1–6.
[15] A. B. Abdul Qayyum, T. Islam, and M. A. Haque, “Malaria diagnosis with dilated convolutional neural network based image analysis,” in 2019 IEEE International Conference on Biomedical Engineering, Computer and Information Technology for Health (BECITHCON), 2019, pp. 68–72.
[16] S. Rajaraman, S. K. Antani, M. Poostchi, K. Silamut, M. A. Hossain, R. J. Maude, S. Jaeger, and G. R. Thoma, “Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images,” PeerJ, vol. 6, p. e4568, 2018.
[17] S. Rajaraman, S. Jaeger, and S. K. Antani, “Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images,” PeerJ, vol. 7, p. e6977, 2019.
[18] K. Fuhad, J. F. Tuba, M. Sarker, R. Ali, S. Momen, N. Mohammed, and T. Rahman, “Deep learning based automatic malaria parasite detection from blood smear and its smartphone based application,” Diagnostics, vol. 10, no. 5, p. 329, 2020.
[19] F. Yang, M. Poostchi, H. Yu, Z. Zhou, K. Silamut, J. Yu, R. J. Maude, S. Jaeger, and S. Antani, “Deep learning for smartphone-based malaria parasite detection in thick blood smears,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 5, pp. 1427–1438, 2020.
[20] A. Vijayalakshmi and B. R. Kanna, “Deep learning approach to detect malaria from microscopic images,” Multimedia Tools and Applications, vol. 79, no. 21, pp. 15 297–15 317, 6 2020.
[21] “Malaria datasets,” 2019, National Library of Medicine. (Online). Available: ftp://lhcftp.nlm.nih.gov/Open-Access-Datasets/Malaria/
[22] “Corrected malaria data II,” 2020, google Drive. (Online). Available: https://drive.google.com/drive/folders/ 1GeQap A5rc29NnBTAewe52pb0JpmLyVJ
[23] “Corrected malaria data I,” 2019, google Drive. (Online). Available: https://drive.google.com/drive/folders/ 10TXXa6B D4AKuBV085tX7UudH1hINBR
[24] Kaggle, “Malaria cell images dataset,” 2019. (Online). Available: https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria
[25] M. Group, “The mamic image database,” 2014. (Online). Available: http://fimm.webmicroscope.net/Research/Momic/mamic
[26] J. Shao, “Linear model selection by cross-validation,” Journal of the American statistical Association, vol. 88, no. 422, pp. 486–494, 1993. 27] “Datasets B, C, codes,” 2020, google Drive. (Online). Available: https://drive.google.com/drive/folders/ 1IHeihe6PlJuCQLvL796D1wMrF5tP99OS
[28] F. Chollet, “Building powerful image classification models using very little data,” Keras Blog, 2016.
[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in International Conference on Learning Representations, 2015.
[30] R. Ilango, “Batch normalization — speed up neural network training,” 2018. (Online). Available: https://medium.com/@ilango100/ batch-normalization-speed-up-neural-network-training-245e39a62f85
[31] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” 2015.
[32] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network acoustic models,” in Proceedings of the 30 th International Conference on Machine Learning, vol. 30, no. 1, 2013, p. 3.
[33] A. Fourcade and R. Khonsari, “A tutorial on fisher information,” Journal of Stomatology, Oral and Maxillofacial Surgery, vol. 120, no. 4, pp. 279–288, 2019, 55th SFSCMFCO Congress.
[34] L. Liu and H. Qi, “Learning effective binary descriptors via cross entropy,” in 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), 2017, pp. 1251–1258.
[35] D. Godoy, Binary Crossentropy log loss, 2018. (Online). Available: towardsdatascience.com/understanding-binary-cross-entropy-log-loss-avisual- explanation-a3ac6025181a
[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014.
[37] Tensorflow, Keras Callbacks, 2020.
[Online]. Available: www.tensorflow.org/guide/keras/custom callback
[38] E. Goceri and A. Gooya, “On the importance of batch size for deep learning,” in An Istanbul Meeting for World Mathematicians, 2018, p. 100.
[Online]. Available: raims.org/files/Abstract Book 2018.pdf
[39] J. Davis and M. Goadrich, “The relationship between precision-recall and roc curves,” in Proceedings of the 23rd international conference on Machine learning, 2006, pp. 233–240.
[40] D. G. Altman and J. M. Bland, “Diagnostic tests. 1: Sensitivity and specificity,” BMJ: British Medical Journal, vol. 308, no. 6943, p. 1552, 1994.
[41] W. Zhu, N. Zeng, N. Wang et al., “Sensitivity, specificity, accuracy, associated confidence interval and roc analysis with practical sas implementations,” NESUG proceedings: health care and life sciences, Baltimore, Maryland, vol. 19, p. 67, 2010.
[42] F. Provost and R. Kohavi, “Glossary of terms,” Journal of Machine Learning, vol. 30, no. 2-3, pp. 271–274, 1998.
[43] K. Grm, V. ˇ Struc, A. Artiges, M. Caron, and H. K. Ekenel, “Strengths and weaknesses of deep learning models for face recognition against image degradations,” Iet Biometrics, vol. 7, no. 1, pp. 81–89, 2017.
[44] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark analysis of representative deep neural network architectures,” IEEE Access, vol. 6, pp. 64 270–64 277, 2018.
Vol:15 No:04 2021Vol:15 No:03 2021Vol:15 No:02 2021Vol:15 No:01 2021
Vol:14 No:12 2020Vol:14 No:11 2020Vol:14 No:10 2020Vol:14 No:09 2020Vol:14 No:08 2020Vol:14 No:07 2020Vol:14 No:06 2020Vol:14 No:05 2020Vol:14 No:04 2020Vol:14 No:03 2020Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007