Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 30296


Select areas to restrict search in scientific publication database:
7598
Maximum Norm Analysis of a Nonmatching Grids Method for Nonlinear Elliptic Boundary Value Problem −Δu = f(u)
Authors:
Abstract:
We provide a maximum norm analysis of a finite element Schwarz alternating method for a nonlinear elliptic boundary value problem of the form -Δu = f(u), on two overlapping sub domains with non matching grids. We consider a domain which is the union of two overlapping sub domains where each sub domain has its own independently generated grid. The two meshes being mutually independent on the overlap region, a triangle belonging to one triangulation does not necessarily belong to the other one. Under a Lipschitz assumption on the nonlinearity, we establish, on each sub domain, an optimal L∞ error estimate between the discrete Schwarz sequence and the exact solution of the boundary value problem.
Digital Object Identifier (DOI):

References:

[1] M. Boulbrachene, Ph. Cortey-Dumont, and J.-C. Miellou, "Mixing finite elements and finite differences in a subdomain method," in Domain Decomposition for partial Differential Equations, pp. 198-216, SIAM, Philadelphia, Pa, USA, 1988.
[2] M. Boulbrachene and S. Saadi,"Maximum norm analysis of an overlapping nonmatching grids method for the obstacle problem"Advances in Difference Equations, pp. 1-10, 2006.
[3] H. Brezis and M. Sibony, "Mthodes d-approximation et d-itration pour les oprateurs monotones" Archive for Rational Mechanics and Analysis, vol. 28, pp. 59-82, 1968.
[4] X.-C. Cai, T.P. Mathew, and M. V. Sarkis,"Maximum norm analysis of overlapping nonmatching grid discretizations of elliptic equations," SIAM Journal on Numerical Analysis, vol. 37, no. 5, pp. 1709-1728, 2000.
[5] P. G. Ciarlet and P.-A. Raviart,"Maximum principle and uniform convergence for the finite element method," Computer Methods in Applied Mechanics and Engineering, vol. 2, pp. 17-31, 1973.
[6] A. Harbi and M. Boulbrachene,"Maximum Norm Analysis of a Nonmatching Grids Method for Nonlinear Elliptic PDES", journal of Applied Mathematic. Volume 2011.
[7] J. Karatson and S. Korotov,"Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions", Numerische Mathematik, vol. 99, no. 4, pp. 669-698, 2005.
[8] P.-L. Lions, "On the Schwarz alternating method. I", in Proceedings of the 1st International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 1-42, SIAM, Philadelphia, Pa, USA, 1988.
[9] P.-L. Lions,"On the Schwarz alternating method. II. Stochastic interpretation and order properties", in Proceedings of the 2nd International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 47-70, SIAM, Philadelphia, Pa, USA, 1989.
[10] S.-H. Lui, "On monotone and Schwarz alternating methods for nonlinear elliptic PDEs", Mathematical Modelling and Numerical Analysis, vol. 35, no. 1, pp. 1-15, 2001.
[11] S. H. Lui,"On linear monotone iteration and Schwarz methods for nonlinear elliptic PDEs", Numerische Mathematik, vol. 93, no. 1, pp. 109-129, 2002.
[12] T. P. Mathew and G. Russo," Maximum norm stability of difference schemes for parabolic equations on overset nonmatching space-time grids", Mathematics of Computation, vol. 72, no. 242, pp. 619-656, 2003.
[13] J. Nitsche," L∞-convergence of finite element approximations", in Proceedings of the Symposium on Mathematical Aspects of Finite Element Methods, vol. 606 of Lecture Notes in Mathematics, pp. 261-274, 1977.
Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007