References:
[1] Gronli M.G., Melaaen M.C., (2000), Mathematical model for wood pyrolysis- Comparison of experimental measurements with model predictions, Energy & Fuels, 14, 791-800.
[2] Galgano A., Di Blasi, C., (2004), Modeling the propagation of drying and decomposition fronts in wood, Combustion and Flame, 139, 16-27.
[3] Bryden K.M., Ragland K.W., Rutland C.J., (2002), Modeling thermally thick pyrolysis of wood, Biomass and Bioenergy, 22, 41-53.
[4] Baronas R., Lvanauskas F., Juodeikiene I., Kajalavicius A., (2001) Modelling of moisture movement in wood during outdoor storage, Nonlinear Analysis: Modelling and Control, 6, 2, 3-14.
[5] Gronli M.G., Melaaen M.C., (1997), Modelling and simulation of moist wood drying and pyrolysis, Developments in Thermochemical Biomass Conversion, Bridgewater, A.V. Boocock, (Eds.), 132-46.
[6] Di Blasi C., (2000), Simultaneous heat, mass and momentum transfer during biomass drying, in: Bridgewater, A.V., Boocock, (Ed.), Developments in thermochemical biomass conversion, 117-31.
[7] Di Blasi C, (1993), Modelling and simulation of combustion processes of charring and non-charring solid fuels, Prog. Energy Combust. Sci., 19, 71-104.
[8] Di Blasi C., (1998), Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels, Journal of Analytical and Applied Pyrolysis, 47, 43-64.
[9] Thunman H., Niklasson F., Johnson F., Leckner B., (2001), Composition of volatile gases and thermochemical properties of wood for modelling of fixed or fluidized beds, Energy & Fuel, 15 1488-497.
[10] Grobski M., Bain R., (1981), Properties of biomass relevant to gasification, In: T.B. Reed (Eds.), Biomass gasification: Principles & Technology: Energy Technology, Solar Energy Research Inst. (SERI), 41-70.
[11] Sharma Avdhesh Kr., Ravi M.R., Kohli S.,(2006) Modelling Product composition in slow pyrolysis of wood, Journal of Solar Energy Society of India(SESI), 16, 1, 1-11.
[12] Borman G.L., Ragland K.W., (1998), Combustion Engineering, McGraw-Hill International Editions.
[13] McCabe W.L., Smith J.C., Harriott P., (1993), Unit Operations of Chemical Engineering, 5th Ed., McGraw-Hill Inc., NY, USA.
[14] Simpson W.T.,(1993), Determination and use of moisture diffusion coefficient to characterize drying of northern red oak (Quercus rubra), Wood Sc. & Tech., 27, 409-20.
[15] Simpson, W.T., (1998) Equilibrium moisture content of wood in outdoor locations in the United States and Worldwide, Research note FPL-RN-0268, Forest Products Laboratory, United States Department of Agriculture, USA, 1998.
[16] Stull D.R., (1947), Vapor pressure of pure substances organic compounds, Ind. Eng. Chem., 39(1947) 517-540.
[17] Liu C.T., Lindsay W.T., (1970), Vapor pressure of D2O from 106 to 300C, J. Chem. Eng. Data, 15, 4, 510-13.
[18] NIST, (2005), NIST Chemistry WebBook, http://webbook.nist.gov
[19] Chan W.R., Kelbon M., Krieger B.B., (1985), Modeling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle, Fuel, 64,1505-13
[20] Sinha S., Jhalani A., Ravi M.R., Ray A., (2000), Modelling of pyrolysis in wood: A review, Journal of the Solar Energy Society of India (SESI), 10, 1, 41-62.
[21] Robert A.F. (1970), A review of kinetics data for pyrolysis of wood and related substances, Combustion and Flame, 14, 263-72.
[22] Sharma Avdhesh Kr., (2006) Simulation of Gasifier-Engine System, Ph.D. Thesis, IIT, Delhi.
[23] Zaror C.A., Pyle D.L., (1982), The Pyrolysis of biomass: A general review, Proc. Indian Acad. Science (Engg. Science), 5, 269-85. G. O. Young, “Synthetic structure of industrial plastics (Book style with paper title and editor),” in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York: McGraw-Hill, 1964, pp. 15–64.
[24] Tillman D.A., Rossi A.M., Kitto W.A., (1981), Wood Combustion, Academic Press Inc.
[25] Zanzi R.V., (2001), Pyrolysis of Biomass: Rapid pyrolysis at high temperature; slow pyrolysis for active carbon preparation, Dissertation, Department of Chemical Engineering and Technology, Chemical Technology, Royal Institute of Technology, Stockholm, Sweden.
[26] Boroson M.L., Howard J.B., Longwell J.P., Peters W.A., (1989), Product yields and kinetics from the vapour phase cracking of wood pyrolysis tars, AIChE Journal, 35, 1, 120-28.