Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 31108

Select areas to restrict search in scientific publication database:
Modeling Non-Darcy Natural Convection Flow of a Micropolar Dusty Fluid with Convective Boundary Condition
A numerical approach of the effectiveness of numerous parameters on magnetohydrodynamic (MHD) natural convection heat and mass transfer problem of a dusty micropolar fluid in a non-Darcy porous regime is prepared in the current paper. In addition, a convective boundary condition is scrutinized into the micropolar dusty fluid model. The governing boundary layer equations are converted utilizing similarity transformations to a system of dimensionless equations to be convenient for numerical treatment. The resulting equations for fluid phase and dust phases of momentum, angular momentum, energy, and concentration with the appropriate boundary conditions are solved numerically applying the Runge-Kutta method of fourth-order. In accordance with the numerical study, it is obtained that the magnitude of the velocity of both fluid phase and particle phase reduces with an increasing magnetic parameter, the mass concentration of the dust particles, and Forchheimer number. While rises due to an increment in convective parameter and Darcy number. Also, the results refer that high values of the magnetic parameter, convective parameter, and Forchheimer number support the temperature distributions. However, deterioration occurs as the mass concentration of the dust particles and Darcy number increases. The angular velocity behavior is described by progress when studying the effect of the magnetic parameter and microrotation parameter.
Digital Object Identifier (DOI):


[1] A. C. Eringen, “Theory of thermomicropolar fluids”, J. Math. Appl. voI. 38, PP. 480-495, 1972.
[2] A. C. Eringen, “Theory of micropolar fluids”, J. Math. Mech. voI. 16, pp. 1-18, 1966.
[3] T. Ariman, M. A. Turk, N. D. Sylvester, “Microcontinuum fluid mechanicsa review”, Int. J. Eng. Sci. voI. 11, PP. 905-929, 1973.
[4] T. Ariman, M. A. Turk, N. D. Sylvester, “Applications of microcontinuum fluid mechanics”, Int. J. Eng. Sci. voI. 12, PP. 273-293, 1974.
[5] H. P. Rani, C. N. Kim, “A transient natural convection of micropolar fluids over a vertical cylinder”, Heat Mass Transfer voI. 46, PP. 1277-1285, 2010.
[6] C. Y. Cheng, “Natural convection of a micropolar fluid from a vertical truncated cone with power-law variation in surface temperature”, Int. Commun. Heat Mass Transfer voI. 35, PP. 39-46, 2008.
[7] R. A. Damseh, T. A. Al-Azab, B. A. Shannak, M. Al Husein, “Unsteady natural convection heat transfer of micropolar fluid over a vertical surface with constant heat flux”, Turk. J. Eng. Environ. Sci. voI. 31, PP. 225-233, 2007.
[8] I .A. Hassanien, A. H. Essawy, N .M. Moursy, Natural convection flow of micropolar fluid from a permeable uniform heat flux surface in porous medium, Appl. Math. Comput. voI. 152, PP. 323-335, 2004.
[9] M. Ferdows, D. Liu, “Natural convective flow of a magneto-micropolar fluid along a vertical plate”, Propul. Power. Rese. voI. 7, PP. 43-51, 2018.
[10] N. V. K. Rao, C. Srinivasulu, C. S. K. Raju, B. Devika, “Thermal natural convection of magneto hydrodynamics micropolar unsteady fluid over a radiated stretching sheet with viscous dissipation”, J. Nanofluids voI. 8, PP. 550-555, 2019.
[11] L. Rundora, O. D. Makinde, “Unsteady MHD flow of non-Newtonian fluid in a channel filled with a saturated porous medium with asymmetric navier slip and convective heating”, Appl. Math. Inform. Sci. Int. J. voI. 12, PP. 483-493, 2018.
[12] A. Mahdy, “Unsteady MHD slip flow of a non-Newtonian Casson fluid due to stretching sheet with suction or blowing effect”, J. Appl. Fluid Mech. voI. 9, PP. 785- 793, 2016.
[13] A. Mahdy, S. A. Ahmed, “Unsteady MHD convective flow of non-Newtonian Casson fluid in the stagnation region of an impulsively rotating sphere”, J. Aero. Eng. voI. 30, PP. 04017036 (8 pages), 2017.
[14] F. M. Hady, A. Mahdy, R. A. Mohamed, Omima A. Abo Zaid, “Effects of viscous dissipation on unsteady MHD thermo bioconvection boundary layer flow of a nanofluid containing gyrotactic microorganisms along a stretching sheet”, World J. Mech. voI. 6, PP. 505-526, 2016.
[15] S. A. Ahmed, A. Mahdy, “Unsteady MHD double diffusive convection in the stagnation region of an impulsively rotating sphere in the presence of thermal radiation effect”, J. Taiwan Institu. Chemical Eng. voI. 58, PP. 173-180, 2016.
[16] S. R. Sheri, “Heat and mass transfer on the MHD flow of micro polar fluid in the presence of viscous dissipation and chemical reaction”, Procedia Eng. voI. 127, PP. 885-892, 2015.
[17] S. A. Shehzad, T. Hayat, A. Alsaedi, “MHD flow of Jeffrey nanofluid with convective boundary conditions”, J. Braz. Soc. Mech. Sci. Eng. voI. 37, PP. 873-883, 2015.
[18] S. L. Lee, J. H. Yang, “Modeling of Darcy-Forchheimer drag for fluid flow across a bank of circular cylinders”, Int. J. Heat Mass Transfer voI. 40, PP. 3149-3155, 1997.
[19] V. Prasad, N. Kladias, “Non-Darcy natural convection in saturated porous media, In: S Kaka, B Kilkis, FA Kulacki and F Arin (eds)”, Convective Heat Mass Transfer Porous Media. voI. 196, PP. 173-224, 1991.
[20] A. L. Dye, J. E.McClure, C. T. Miller, W. G. Gray, “Description of non-Darcy flows in porous medium systems”, Phys. Rev. E voI. 87, PP. 033012 (14 pages), 2013.
[21] J. S. R. Prasad, K. Hemalatha, “A study on mixed convective, MHD flow from a vertical plate embedded in non-Newtonian fluid saturated non- Darcy porous medium with melting effect”, J. Appl. Fluid Mech. voI. 9, PP. 293-302, 2016.
[22] P. Nithiarasu, K. N. Seetharamu, T. Sundararajan, “Non-Darcy double-diffusive natural convection in axisymmetric fluid saturated porous cavities”, Heat Mass Transfer voI. 32, PP. 427-433, 1997.
[23] A. Y. Bakier, “Natural convection heat and mass transfer in a micropolar fluid- saturated non-Darcy porous regime with radiation and thermophoresis effects”, Therm. Sci. voI. 15, PP. S317-S326, 2011.
[24] F. M. Hady, R. A. Mohamed, A. Mahdy, “Non-Darcy natural convection flow along a vertical wavy plate embedded in a non-Newtonian fluid saturated porous medium”, Int. J. Appl. Mech. Eng. voI. 13, PP. 91-100, 2008.
[25] F. M. Hady, R. A. Mohamed, A. Mahdy, Omima A. Abo-Zaid, “Non-Darcy natural convection boundary layer flow over a vertical cone in porous media saturated with a nanofluid containing gyrotactic microorganisms with a convective boundary condition”, J. Nanofluids voI. 5, PP. 765-773, 2016.
[26] R. A. Mohamed, A. Mahdy, S. Abo-Dahab, “Effects of thermophoresis, heat source/sink, variable viscosity and chemical reaction on non-Darcian mixed convective heat and mass transfer flow over a semi-infinite porous inclined plate in the presence of thermal radiation”, J. Computational Theoretical Nanoscie. voI. 10, PP. 1366-1375, 2013.
[27] S. Siddiqa, N. Begum, Md. A. Hossain, R. S. R. Gorla, “Natural convection flow of a two-phase dusty non-Newtonian fluid along a vertical surface”, Int. J. Heat Mass Transfer voI. 113, PP. 482-489, 2017.
[28] S. Siddiqa, N. Begum, M. A. Hossain, R. S. R. Gorla, “Numerical solutions of natural convection flow of a dusty nanofluid about a vertical wavy truncated cone”, J. Heat Transfer voI. 139, PP. 022503 (11 pages), 2017.
[29] S. Siddiqa, N. Begum, M. A. Hossain, R. S. R. Gorla, “Two-phase natural convection flow of a dusty fluid”, Int. J. Numer. Meth. Heat Fluid Flow voI. 25, PP. 1542-1556, 2015.
[30] D. C. Dalal, N. Datta, S. K. Mukherjea, “Unsteady natural convection of a dusty fluid in an infinite rectangular channel”, Int. J. Heat Mass Transfer voI. 41, PP. 547-562, 1998.
[31] S. M. Silu, M. Wainaina, M. Kimathi, “Effects of magnetic induction on MHD boundary Layer flow of dusty fluid over a stretching sheet”, Global J. Pure Appl. Math. voI. 14, PP. 1197-1215, 2018.
[32] B. J. Gireesha, R. S. R. Gorla, M. R. Krishnamurthy, B. C. Prasannakumara, “Biot number effect on MHD flow and heat transfer of nanofluid with suspended dust particles in the presence of nonlinear thermal radiation and non-uniform heat source/sink”, Acta Et Commentationes Universitatis Tartuensis De Mathematica voI. 22, PP. 91-114, 2018.
[33] B. J. Gireesha, R. S. R. Gorla, M. R. Krishnamurthy, B. C. Prasannakumara, “MHD flow and radiative heat transfer of micropolar dusty fluid suspended with alumina nanoparticles over a stretching sheet embedded in a porous medium”, JNNCE J. Eng. Manag. voI. 2, PP. 30-45, 2018.
Vol:15 No:03 2021Vol:15 No:02 2021Vol:15 No:01 2021
Vol:14 No:12 2020Vol:14 No:11 2020Vol:14 No:10 2020Vol:14 No:09 2020Vol:14 No:08 2020Vol:14 No:07 2020Vol:14 No:06 2020Vol:14 No:05 2020Vol:14 No:04 2020Vol:14 No:03 2020Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007