References:
[1] Wattanasakulpong, N. and Ungbhakorn, V. (2014) “Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities,” Aerospace Science and Technology 32(1), 111–120
[2] Dimentberg FM, Flexural vibrations of rotating shafts. London: Butterworths, 1961
[3] Ruhl R, Booker JF, A finite element model for distributed parameter turbo rotor systems. J Eng Ind 1972; 94: 128–132
[4] Nelson HD, Mcvaugh JM, The dynamics of rotor bearing systems using finite elements. J Eng Ind 1976; 98: 593–600
[5] Nelson HD, A finite rotating shaft element using Timoshenko beam theory. J Mech Des 1980; 102: 793–803
[6] Chakraborty A, Gopalakrishnan S, Reddy JN. A new beam finite element for the analysis of functionally graded materials. Int J Mech Sci 2003; 45: 519–539.
[7] Xiang HJ, Yang J. Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. Compos Part B: Eng 2008; 39: 292–303
[8] Reddy J.N., Chin C.D., 1998. Thermoelastical analysis of functionally graded cylinders and plates. J. Therm. Stresses. 21(6), 593-626
[9] Aydogdu, M. and Taskin, V. (2007) “Free vibration analysis of functionally graded beams with simply supported edges. ”Materials & Design 28(5), 1651–1656.
[10] Simsek, M. and Aydın, M. (2017) “Size-dependent forced vibration of an imperfect functionally graded (FG) microplate with porosities subjected to a moving load using the modified couple stress Theory,” Composite Structures 160, 408–421.
[11] Gayen D, Roy T (2014) Finite element based vibration analysis of functionally graded spinning shaft system. J Mech Eng Sci Part C 228(18):3306–3321
[12] Gayen, Chakraborty, Tiwari, Free Vibration Analysis of Functionally Graded Shaft System with a Surface Crack. Journal of Vibration Engineering & Technologies (2018) 6:483–494
[13] Arnab B, Prabhakar S, Natural frequency analysis of a functionally graded rotor system using the three-dimensional finite element method, Vibroengineering PROCEDIA,
[14] Jahwari, F. and Naguib, H. E. (2016) “Analysis and homogenization of functionally graded viscoelastic porous structures with a higher order plate theory and statistical based model of cellular distribution,” Applied Mathematical Modelling 40(3), 2190–2205.
[15] Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B. B. (2016b) “Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories,” Journal of the Brazilian Society of Mechanical Sciences and Engineering 38, 2193–2211.
[16] Atmane, H. A., Tounsi, A., Bernard, F. and Mahmoud, S. R. (2015) “A computational shear displacement model for vibrational analysis of functionally graded beams with porosities,” Steel and Composite Structures 19(2), 369–384.
[17] Ebrahimi, F. and Jafari, A. (2016) “A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities,” Journal of Engineering 2016
[18] Seref Doguscan Akbas, Thermal Effects on the Vibration of Functionally Graded Deep Beams with Porosity, International Journal of Applied Mechanics Vol. 9, No. 5 (2017) 1750076
[19] Touloukian YS. Thermophysical properties of high-temperature solid materials. New York: McMillan; 1967.
[20] Sekhar A.S., Prasad P.B. Dynamic analysis of a rotor system considering a slant crack in the shaft. Journal of Sound and Vibration (1997) 208(3), 457–474
[21] ANSYS Theory Manual
[22] Gayen D, Chakraborty D, Tiwari R, Whirl frequencies and critical speeds of a rotor-bearing system with a cracked functionally graded shaft – Finite element analysis, European Journal of Mechanics / A Solids (2016)