Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 31097

Select areas to restrict search in scientific publication database:
Numerical Study of Natural Convection in a Triangular Enclosure as an Attic for Different Geometries and Boundary Conditions
In this paper, natural convection in an attic is numerically investigated. The geometry of the problem is considered to be a triangular enclosure. ANSYS Fluent software is used for modeling and numerical solution. This study is for steady state. Four right-angled triangles with height to base ratios of 2, 1, 0.5 and 0.25 are considered. The behavior of various parameters related to its performance, including temperature distribution and velocity vectors are evaluated, and graphs for the Nusselt number have been drawn. Also, in this study, the effect of geometric shape of enclosure with different height-to-base ratios has been evaluated for three types of boundary conditions of winter, summer day and one another state. It can be concluded that as the bottom side temperature and ratio of base to height of the enclosure increases, the convective effects become more prominent and circulation happened.


[1] H. Chiang and C. Kleinstreuer, "Analysis of passive cooling in a vertical finite channel using a falling liquid film and buoyancy-induced gas-vapor flow," International Journal of Heat and Mass Transfer, vol. 34, pp. 2339-2349, 1991.
[2] P. Payvar, "Laminar heat transfer in the oil groove of a wet clutch," International Journal of Heat and Mass Transfer, vol. 34, pp. 1791-1798, 1991.
[3] P. M. Haese and M. D. Teubner, "Heat exchange in an attic space," International Journal of Heat and Mass Transfer, vol. 45, pp. 4925-4936, 2002.
[4] K. A. Joudi, I. A. Hussein, and A. A. Farhan, "Computational model for a prism shaped storage solar collector with a right triangular cross section," Energy Conversion and Management, vol. 45, pp. 391-409, 2004.
[5] H. Mistry, s. Ganapathi, S. Dey, P. Bishnoi, and J. L. Castillo, "Modeling of transient natural convection heat transfer in electric ovens," Applied Thermal Engineering, vol. 26, pp. 2448-2456, 2006.
[6] A. M. A. Dayem, "Experimental and numerical performance of a multi-effect condensation–evaporation solar water distillation system," Energy, vol. 31, pp. 2710-2727, 2006.
[7] S. Wang, A. Faghri, and T. L. Bergman, "A comprehensive numerical model for melting with natural convection," International Journal of Heat and Mass Transfer, vol. 53, pp. 1986-2000, 2010.
[8] S. Kalaiselvam, M. Veerappan, A. Arul Aaron, and S. Iniyan, "Experimental and analytical investigation of solidification and melting characteristics of PCMs inside cylindrical encapsulation," International Journal of Thermal Sciences, vol. 47, pp. 858-874, 2008.
[9] T. Fusegi and J. M. Hyun, "Laminar and transitional natural convection in an enclosure with complex and realistic conditions," International Journal of Heat and Fluid Flow, vol. 15, pp. 258-268, 1994.
[10] S. Ostrach, "Natural Convection in Enclosures," Journal of Heat Transfer, vol. 110, pp. 1175-1190, 1988.
[11] C. Hoogendoorn, "Natural Convection in Enclosures Proc. 8th Int," in Heat Trans-fer Conf. San Francisco, 1986.
[12] T. S. Lee, "Computational and experimental studies of convective fluid motion and heat transfer in inclined non-rectangular enclosures," International Journal of Heat and Fluid Flow, vol. 5, pp. 29-36, 1984.
[13] L. Iyican, Y. Bayazitoǧlu, and L. C. Witte, "An Analytical Study of Natural Convective Heat Transfer within a Trapezoidal Enclosure," Journal of Heat Transfer, vol. 102, pp. 640-647, 1980.
[14] O. Kamiyo, D. Angeli, G. Barozzi, M. Collins, V. Olunloyo, and S. Talabi, "A comprehensive review of natural convection in triangular enclosures," Applied Mechanics Reviews, vol. 63, p. 060801, 2010.
[15] Y. Varol, "Natural convection in porous triangular enclosure with a centered conducting body," International Communications in Heat and Mass Transfer, vol. 38, pp. 368-376, 2011.
[16] S. M. Aminossadati and B. Ghasemi, "Enhanced natural convection in an isosceles triangular enclosure filled with a nanofluid," Computers & Mathematics with Applications, vol. 61, pp. 1739-1753, 2011.
[17] H. F. Oztop, Y. Varol, A. Koca, and M. Firat, "Experimental and numerical analysis of buoyancy-induced flow in inclined triangular enclosures," International Communications in Heat and Mass Transfer, vol. 39, pp. 1237-1244, 2012.
[18] M. M. Billah, M. M. Rahman, M. A. Razzak, R. Saidur, and S. Mekhilef, "Unsteady buoyancy-driven heat transfer enhancement of nanofluids in an inclined triangular enclosure," International Communications in Heat and Mass Transfer, vol. 49, pp. 115-127, 2013.
[19] S. C. Saha and Y. T. Gu, "Natural convection in a triangular enclosure heated from below and non-uniformly cooled from top," International Journal of Heat and Mass Transfer, vol. 80, pp. 529-538, 2015.
[20] O. Mahian, A. Kianifar, S. Z. Heris, and S. Wongwises, "Natural convection of silica nanofluids in square and triangular enclosures: Theoretical and experimental study," International Journal of Heat and Mass Transfer, vol. 99, pp. 792-804, 2016.
Vol:15 No:03 2021Vol:15 No:02 2021Vol:15 No:01 2021
Vol:14 No:12 2020Vol:14 No:11 2020Vol:14 No:10 2020Vol:14 No:09 2020Vol:14 No:08 2020Vol:14 No:07 2020Vol:14 No:06 2020Vol:14 No:05 2020Vol:14 No:04 2020Vol:14 No:03 2020Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007