Numerical Study of Natural Convection in a Triangular Enclosure as an Attic for Different Geometries and Boundary Conditions
References:
[1] H. Chiang and C. Kleinstreuer, "Analysis of passive cooling in a vertical finite channel using a falling liquid film and buoyancy-induced gas-vapor flow," International Journal of Heat and Mass Transfer, vol. 34, pp. 2339-2349, 1991.
[2] P. Payvar, "Laminar heat transfer in the oil groove of a wet clutch," International Journal of Heat and Mass Transfer, vol. 34, pp. 1791-1798, 1991.
[3] P. M. Haese and M. D. Teubner, "Heat exchange in an attic space," International Journal of Heat and Mass Transfer, vol. 45, pp. 4925-4936, 2002.
[4] K. A. Joudi, I. A. Hussein, and A. A. Farhan, "Computational model for a prism shaped storage solar collector with a right triangular cross section," Energy Conversion and Management, vol. 45, pp. 391-409, 2004.
[5] H. Mistry, s. Ganapathi, S. Dey, P. Bishnoi, and J. L. Castillo, "Modeling of transient natural convection heat transfer in electric ovens," Applied Thermal Engineering, vol. 26, pp. 2448-2456, 2006.
[6] A. M. A. Dayem, "Experimental and numerical performance of a multi-effect condensation–evaporation solar water distillation system," Energy, vol. 31, pp. 2710-2727, 2006.
[7] S. Wang, A. Faghri, and T. L. Bergman, "A comprehensive numerical model for melting with natural convection," International Journal of Heat and Mass Transfer, vol. 53, pp. 1986-2000, 2010.
[8] S. Kalaiselvam, M. Veerappan, A. Arul Aaron, and S. Iniyan, "Experimental and analytical investigation of solidification and melting characteristics of PCMs inside cylindrical encapsulation," International Journal of Thermal Sciences, vol. 47, pp. 858-874, 2008.
[9] T. Fusegi and J. M. Hyun, "Laminar and transitional natural convection in an enclosure with complex and realistic conditions," International Journal of Heat and Fluid Flow, vol. 15, pp. 258-268, 1994.
[10] S. Ostrach, "Natural Convection in Enclosures," Journal of Heat Transfer, vol. 110, pp. 1175-1190, 1988.
[11] C. Hoogendoorn, "Natural Convection in Enclosures Proc. 8th Int," in Heat Trans-fer Conf. San Francisco, 1986.
[12] T. S. Lee, "Computational and experimental studies of convective fluid motion and heat transfer in inclined non-rectangular enclosures," International Journal of Heat and Fluid Flow, vol. 5, pp. 29-36, 1984.
[13] L. Iyican, Y. Bayazitoǧlu, and L. C. Witte, "An Analytical Study of Natural Convective Heat Transfer within a Trapezoidal Enclosure," Journal of Heat Transfer, vol. 102, pp. 640-647, 1980.
[14] O. Kamiyo, D. Angeli, G. Barozzi, M. Collins, V. Olunloyo, and S. Talabi, "A comprehensive review of natural convection in triangular enclosures," Applied Mechanics Reviews, vol. 63, p. 060801, 2010.
[15] Y. Varol, "Natural convection in porous triangular enclosure with a centered conducting body," International Communications in Heat and Mass Transfer, vol. 38, pp. 368-376, 2011.
[16] S. M. Aminossadati and B. Ghasemi, "Enhanced natural convection in an isosceles triangular enclosure filled with a nanofluid," Computers & Mathematics with Applications, vol. 61, pp. 1739-1753, 2011.
[17] H. F. Oztop, Y. Varol, A. Koca, and M. Firat, "Experimental and numerical analysis of buoyancy-induced flow in inclined triangular enclosures," International Communications in Heat and Mass Transfer, vol. 39, pp. 1237-1244, 2012.
[18] M. M. Billah, M. M. Rahman, M. A. Razzak, R. Saidur, and S. Mekhilef, "Unsteady buoyancy-driven heat transfer enhancement of nanofluids in an inclined triangular enclosure," International Communications in Heat and Mass Transfer, vol. 49, pp. 115-127, 2013.
[19] S. C. Saha and Y. T. Gu, "Natural convection in a triangular enclosure heated from below and non-uniformly cooled from top," International Journal of Heat and Mass Transfer, vol. 80, pp. 529-538, 2015.
[20] O. Mahian, A. Kianifar, S. Z. Heris, and S. Wongwises, "Natural convection of silica nanofluids in square and triangular enclosures: Theoretical and experimental study," International Journal of Heat and Mass Transfer, vol. 99, pp. 792-804, 2016.