Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 31198

Select areas to restrict search in scientific publication database:
On the Hierarchical Ergodicity Coefficient
In this paper, we deal with the fundamental concepts and properties of ergodicity coefficients in a hierarchical sense by making use of partition. Moreover, we establish a hierarchial Hajnal’s inequality improving some previous results.
Digital Object Identifier (DOI):


[1] M. Akelbek and S. Kirkland, Coefficients of ergodicity and the scrambling index. Linear Algebra Appl., 430(2009) 1111–1130.
[2] M. Artzrouni, The local coefficient of ergodicity of a nonnegative matrix. SIAM J. Matrix Anal. Appl., 25(2003) 507–516.
[3] M. Artzrouni and O. Gavart, Nonlinear matrix iterative processes and generalized coefficient of ergodicity. SIAM Matrix Anal. Appl., 21(2000) 1343–1353.
[4] R. L. Dobrushin, Central limit theorem for nonstationary Markov chains. I. Theory Probab. Appl., 1(1956) 65–79.
[5] J. Hajnal, Weak ergodicity in non-homogeneous Markov chains. Proc. Camb. Phil. Soc., 54(1958) 233–246.
[6] Y. Han, W. Lu, and T. Chen, Cluster consensus in discrete-time networks of multi-agents with adapted inputs. To appear in IEEE Trans. Neural Netw. Learn. Syst.
[7] D. J. Hartfiel, Nonhomogeneous Matrix Products. World Scientific, New Jersey, 2002.
[8] I. C. F. Ipsen and T. M. Selee, Ergodicity coefficients defined by vector norms. SIAM J. Matrix Anal. Appl., 32(2011) 153–200.
[9] A. A. Markov, Extension of the law of large numbers to dependent quantities. Izv. Fiz.-Matem. Obsch. Kazan Univ. 15(1906) 135–156.
[10] U. Pˇaun, A class of ergodicity coefficients, and applications. Math. Rep. (Bucur.), 4(2002) 225–232.
[11] U. Pˇaun, New classes of ergodicity coefficients, and applications. Math. Rep. (Bucur.), 6(2004) 141–158.
[12] U. Pˇaun, Weak and uniform weak Δ-ergodicity for
[Δ]-groupable finite Markov chains. Math. Rep. (Bucur.), 6(2004) 275–293.
[13] A. Paz, Ergodic theorems for infinite probabilistic tables. Ann. Math. Statist., 41(1970) 539–550.
[14] E. Seneta, On the historical development of the theory of finite inhomogeneous Markov chains. Proc. Camb. Phil. Soc., 74(1973) 507–513.
[15] E. Seneta, Explicit forms for ergodicity coefficients and spectrum localization. Linear Algebra Appl., 60(1984) 187–197.
[16] E. Seneta, Non-negative Matrices and Markov Chains. Springer-Verlag, New York, 2006.
[17] Y. Shang, Exponential random geometric graph process models for mobile wireless networks. Proc. of the International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Zhangjiajie, 2009, 56–61.
[18] Y. Shang, Multi-agent coordination in directed moving neighborhood random networks. Chin. Phys. B, 19(2010) 070201.
[19] Y. Shang, L1 group consensus of multi-agent systems with stochastic inputs under directed interaction topology. Int. J. Control, 86(2013) 1–8.
[20] J. Shen, A geometric approach to ergodic non-homogeneous Markov chains. In: (Eds. T.-X. He) Wavelet Analysis and Multiresolution Methods, Lecture Notes in Pure and Applied Mathematics, 212(2000) 341–366.
Vol:15 No:04 2021Vol:15 No:03 2021Vol:15 No:02 2021Vol:15 No:01 2021
Vol:14 No:12 2020Vol:14 No:11 2020Vol:14 No:10 2020Vol:14 No:09 2020Vol:14 No:08 2020Vol:14 No:07 2020Vol:14 No:06 2020Vol:14 No:05 2020Vol:14 No:04 2020Vol:14 No:03 2020Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007