Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System
References:
[1] J.G. Juang, R.W. Lin, and W.K. Liu, “Comparison of classical control and intelligent control for a MIMO system,” Applied Mathematics and Computation, vol. 205, no. 2, pp. 778-791, 2008.
[2] G.D. Prasad, P.S. Manoharan, and A.P.S. Ramalakshmi, “PID control scheme for twin rotor MIMO system using a real valued genetic algorithm with a predetermined search range,” in Power, Energy and Control (ICPEC), 2013.
[3] S.S. Butt, and H. Aschemann, “Multi-Variable Integral Sliding Mode Control of a Two Degrees of Freedom Helicopter,” IFAC-PapersOnLine, vol. 48, no. 1, pp. 802-807, 2015.
[4] J.G. Juang, M.T. Huang, and W.K. Liu, “PID Control Using Presearched Genetic Algorithms for a MIMO System,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 5, pp. 716-727, 2008.
[5] A. Phillips, and F. Sahin, “Optimal control of a twin rotor MIMO system using LQR with integral action,” World Automation Congress (WAC), 2014.
[6] Rahideh and M.H. Shaheed, “Real time hybrid fuzzy-PID control of a twin rotor system,” IEEE International Conference, 2009.
[7] C.W. Tao, J.S. Taur, Y.H. Chang and C-W. Chang, “A Novel Fuzzy-Sliding and Fuzzy-Integral-Sliding Controller for the Twin-Rotor Multi-Input Multi-Output System,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 893-905, 2010.
[8] P. Wen and T.W. Lu, “Decoupling control of a twin rotor MIMO system using robust deadbeat control technique,” IET Control Theory & Applications, vol. 2, no. 11, pp. 999-1007, 2008.
[9] A. Boulkroune, M. M’Saad, and H. Chekireb, “Design of a fuzzy adaptive controller for MIMO nonlinear time-delay systems with unknown actuator nonlinearities and unknown control direction,” Information Sciences, vol. 180, no. 24, pp. 5041-5059, 2010.
[10] J. Juang, W. Liu, and R. Lin, “A hybrid intelligent controller for a twin rotor MIMO system and its hardware implementation,” ISA Transactions, vol. 50, no. 4, pp. 609-619, 2011.
[11] A. Rahideh and M.H. Shaheed, “Hybrid Fuzzy-PID-based Control of a Twin Rotor MIMO System,” In IEEE Industrial Electronics, IECON, 32nd Annual Conference 2006.
[12] C.W. Tao, J.S. Taur, and Y.C. Chen, “Design of a parallel distributed fuzzy LQR controller for the twin rotor multi-input multi-output system,” Fuzzy Sets and Systems, vol. 161, no. 15, pp. 2081-2103, 2010.
[13] J. Thomas, “Particle swarm optimization based model predictive control for constrained nonlinear systems,” in Informatics in Control, Automation and Robotics (ICINCO), 11th International Conference. 2014.
[14] L. Chrif and Z.M. Kadda, “Aircraft Control System Using LQG and LQR Controller with Optimal Estimation-Kalman Filter Design,” Procedia Engineering, vol. 80, pp. 245-257, 2014.
[15] S.K. Pandey and V. Laxmi, “Optimal Control of Twin Rotor MIMO System Using LQR Technique,” in Computational Intelligence in Data Mining - Volume 1: Proceedings of the International Conference on CIDM, pp. 11-21, Dec. 2014.
[16] “INTECO”, Two Rotor Aero-Dynamical System User’s Manual, 2013; Available: http://www.inteco.com.pl/products/two-rotor-aerodynamical-system/. Accessed: Oct, 15, 2016.
[17] R.S. Esfandiari and B. Lu, Modeling and Analysis of Dynamic Systems. Second Edition. CRC Press, 2014.
[18] Y. Han, Q. Li, H. Yang and W. Chen, Design optimal temperature control system based on effective informed adaptive particle swarm optimization for proton exchange membrane fuel cell, 35th Chinese Control Conference (CCC), 2016.
[19] S.K. Meena and S. Channa, Load Frequency Control of multi area system using Hybrid Particle Swarm Optimization. 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS), 2015.