Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 31177


Select areas to restrict search in scientific publication database:
10011308
Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race
Abstract:
In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.
Digital Object Identifier (DOI):

References:

[1] P. A. Gutierrez, M. Perez-Ortiz, J. Sanchez-Monedero, F. Fernandez-Navarro, and C. Hervas-Martinez, “Ordinal regression methods: Survey and experimental study,” IEEE Trans. Knowl. and Data Eng., vol. 28, no. 1, pp. 127–146, 2016.
[2] M. Raghu and E. Schmidt. (2020, March) A survey of deep learning for scientific discovery.
[Online]. Available: arXiv:2003.11755
[3] M. Strand and D. Boes, “Modeling road racing times of competitive recreational runners using extreme value theory,” Am. Stat., vol. 52, no. 3, pp. 205–210, 1998.
[4] H. Spearing, J. A. Tawn, D. B. Irons, T. Paulden, and G. A. Bennett. (2020, June) Ranking, and other properties, of elite swimmers using extreme value theory.
[Online]. Available: arXiv:1910.10070
[5] L. F. Fenton, “The sum of log-normal probability distibutions in scattered transmission systems,” IRE Trans. Commun. Syst., vol. 8, pp. 57–67, 1960.
[6] R. I. Wilkinson, “Unpublished, cited in 1967,” Bell Telephone Labs, 1934.
[7] B. R. Cobb, R. Rum´ı, and A. Salmer´on, “Approximating the distribution of a sum of log-normal random variables,” in Proc. 6th Eur. Workshop Probab. Graph. Models, 2012, pp. 67–74.
[8] S. Nadarajah, “Explicit expressions for moments of log normal order statistics,” Economic Quality Control, vol. 23, no. 2, pp. 267–279, 2008.
[9] E. T. Jaynes, “Information theory and statistical mechanics,” Phys. Rev., vol. 106, no. 4, pp. 620–630, 1957.
[10] E. J. Allen, P. M. Dechow, D. G. Pope, and G. Wu, “Reference-dependent preferences: Evidence from marathon runners,” Manag. Sci., vol. 63, no. 6, pp. 1657–2048, 2017.
[11] D. Ruiz-Mayo, E. Pulido, and G. Mart´ı˜noz, “Marathon performance prediction of amateur runners based on training session data,” in Proc. Mach. Learn. and Data Min. for Sports Anal., 2016.
[12] J. Esteve-Lanao, S. D. Rosso, E. Larumbe-Zabala, C. Cardona, A. Alcocer-Gamboa, and D. A. Boullosa, “Predicting recreational runners’ marathon performance time during their training preparation,” J. Strength Cond. Res. doi: 10.1519/JSC.0000000000003199
[Epub ahead of print], 2019.
[13] K. A. Wang, G. Pleiss, J. R. Gardner, S. Tyree, K. Q. Weinberger, and A. G. Wilson, “Exact gaussian processes on a million data points,” in Proc. Adv. Neural Inf. Process. Syst. 32, 2019, pp. 14 648–14 659.
[14] C. E. Rasmussen and C. K. I. Williams, “Gaussian processes for machine learning,” The MIT Press, 2006.
[15] Gpytorch regression tutorial.
[Online]. Available: https://gpytorch.readthedocs.io/en/latest/examples/01 Exact GPs/ Simple GP Regression.html
[16] Mord: Ordinal regression in python.
[Online]. Available: https: //pythonhosted.org/mord/
[17] F. Pedregosa-Izquierdo, “Feature extraction and supervised learning on fmri: from practice to theory,” Ph.D. dissertation, Universit´e Pierre-et-Marie-Curie, 2015.
[18] Jukola 2019.
[Online]. Available: https://results.jukola.com/tulokset/en/ j2019 ju/
[19] E. Limpert, W. A. Stahel, and M. Abbt, “Log-normal distributions across the sciences: Keys and clues,” Bioscience, vol. 51, pp. 341–352, 2001.
[20] P. Chen, R. Tong, G. Lu, and Y. Wang, “Exploring travel time distribution and variability patterns using probe vehicle data: Case study in beijing,” J. Adv. Transp., pp. 1–13, 2018.
[21] R. Ruggles and H. Brodie, “An empirical approach to economic intelligence in world war ii,” J. Am. Stat. Assoc., vol. 42, no. 237, pp. 72–91, 1947.
[22] L. A. Goodman, “Serial number analysis,” J. Am. Stat. Assoc., vol. 47, no. 270, pp. 622–634, 1952.
Vol:15 No:04 2021Vol:15 No:03 2021Vol:15 No:02 2021Vol:15 No:01 2021
Vol:14 No:12 2020Vol:14 No:11 2020Vol:14 No:10 2020Vol:14 No:09 2020Vol:14 No:08 2020Vol:14 No:07 2020Vol:14 No:06 2020Vol:14 No:05 2020Vol:14 No:04 2020Vol:14 No:03 2020Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007