Performance Analysis of Artificial Neural Network Based Land Cover Classification
References:
[1] S. Wheeler and P. N. Misra, “Crop classification with Landsat multispectral scanner data II”, Pattern Recognition, vol. 12, pp. 219-228, 1980.
[2] B R Deilmai, K D Kanniah1, A W Rasib and A Ariffin, “Comparison of pixel –based and Artificial neural networks classification methods for detecting forest cover changes in Malaysia Department of Geoinformation, Faculty of Geoinformation and Real Estate,
[3] Universiti Teknologi Malaysia, 81310 Johor, Malaysia
[4] S. W. Buechel, W. R. Philipson, and W. D. Philpot, “The effects of a complex environment on crop separability with Landsat TM”, Remote Sensing of Environment, vol. 27, pp. 261-271, 1989.
[5] A. Aziz; M. Muhammad; A. Manzoor; Y. Muhammad; U. Sadiq; K. Shahbaz, "Mahalanobis distance and maximum likelihood based classification for identifying tobacco in Pakistan," in Recent Advances in Space Technologies (RAST), 2015 7th International Conference on, vol., no., pp.255-260, 16-19 June 2015
[6] J. A. Richards and J. Richards, Remote sensing digital image analysis vol. 3: Springer, 1999.
[7] R. R. Macleod, R. G. Congalton “A quantitative comparison of change-detection algorithms for monitoring Eelgrass from remotely sensed data”. Photogramm. Eng Rem S 64 207-216 1998.
[8] J F Mas, J J Flores “The application of artificial neural networks to the analysis of remotely sensed data”. J. Remote. Sens 29 617-663, 2008
[9] V. E Neagoe, M. Neghina, and M. Datcu “Neural Network Techniques for Automated Land-Cover Change Detection in Multispectral Satellite Time Series Imagery”. Int. J. Math. Models Methods. Appl. Sci 131-139, 2012.
[10] G. Pajares, "A Hopfield Neural Network for Image Change Detection," in IEEE Transactions on Neural Networks, vol. 17, no. 5, pp. 1250-1264, Sept. 2006.
[11] H. Yuan, Van Der Wiele C F and S.Khorram “An automated artificial neural network system for land use/land cover classification from Landsat TM imagery”. Remote. Sens1 243-265, 2009.
[12] H. Ibrahim, N. S. P. Kong, and T. F. Ng, "Simple adaptive median filter for the removal of impulse noise from highly corrupted images," Consumer Electronics, IEEE Transactions on, vol. 54, pp. 1920-1927, 2008.
[13] G. M. Foody, "Thematic Map Comparison," Photogrammetric Engineering & Remote Sensing, vol. 70, pp. 627-633, 2004
[14] K Perumal and R Bhaskaran, “Supervised Classification Performance of Multispectral Images”, Journal of Computing, Volume 2, Issue 2, February2010, ISSN 2151-9617
[15] J.A.Richards, 1999, “Remote Sensing Digital Image Analysis” Springer- Verlag, Berlin p.240.
[16] Yu-guo Wang; Hua-peng Li, "Remote sensing image classification based on artificial neural network: A case study of Honghe Wetlands National Nature Reserve," in Computer, Mechatronics, Control and Electronic Engineering (CMCE), 2010 International Conference on , vol.5, no., pp.17-20, 24-26 Aug. 2010, 10.1109/CMCE.2010.5610049
[17] A. Khobragade, P. Athawale, M. Raguwanshi., "Optimization of statistical learning algorithm for crop discrimination using remote sensing data," in Advance Computing Conference (IACC), 2015 IEEE International, pp.570-574, 12-13 June 2015, 10.1109/IADCC.2015.7154771
[18] L. H. Thai, T. S. Hai, N. T. Thuy., "Image Classification using Support Vector Machine and Artificial Neural Network", in International Journal of Information Technology and Computer Science(IJITCS), IJITCS Vol. No. 5,pp. 32-38, May 2012