Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 31237

Select areas to restrict search in scientific publication database:
Performance Assessment in a Voice Coil Motor for Maximizing the Energy Harvesting with Gait Motions
In this study, an experimental approach is established to assess the performance of different beams coupled to a Voice Coil Motor (VCM) with the aim to maximize mechanically the energy harvesting in the inductive transducer that is included on it. The VCM is extracted from a recycled hard disk drive (HDD) and it is adapted for carrying out experimental tests of energy harvesting. Two individuals were selected for walking with the VCM-beam device as well as to evaluate the performance varying two parameters in the beam; length of the beams and a mass addition. Results show that the energy harvesting is maximized with specific beams; however, the harvesting efficiency is improved when a mass is added to the end of the beams.
Digital Object Identifier (DOI):


[1] P. Shashank, and D. J. Inman, Energy harvesting technologies. Vol. 21. New York: Springer, 2009.
[2] Jang, M., Song, S., Park, Y. H., & Yun, K. S. (2015). Piezoelectric energy harvester operated by noncontact mechanical frequency up-conversion using shell cantilever structure. Japanese Journal of Applied Physics, 54(6S1), 06FP08.
[3] Ansari, M. H., & Karami, M. A. (2015). Energy harvesting from controlled buckling of piezoelectric beams. Smart Materials and Structures, 24(11), 115005.
[4] Zhou, S., Cao, J., Erturk, A., & Lin, J. (2013). Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Applied Physics Letters, 102(17), 173901.
[5] Hosseini, R., & Hamedi, M. (2015). Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs. Journal of Micromechanics and Microengineering, 25(12), 125008.
[6] Stanton, S. C., McGehee, C. C., & Mann, B. P. (2010). Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Physica D: Nonlinear Phenomena, 239(10), 640-653.
[7] Muthalif, A. G., & Nordin, N. D. (2015). Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results. Mechanical Systems and Signal Processing, 54, 417-426.
[8] Anderson, T. A., & Sexton, D. W. (2006, March). A vibration energy harvesting sensor platform for increased industrial efficiency. In Smart structures and materials (pp. 61741Y-61741Y). International Society for Optics and Photonics.
[9] Beeby, S. P., Tudor, M. J., & White, N. M. (2006). Energy harvesting vibration sources for microsystems applications. Measurement science and technology,17(12), R175.
[10] Erturk, A., & Inman, D. J. (2011). Piezoelectric energy harvesting. John Wiley & Sons.
[11] Gatti, G., Brennan, M. J., Tehrani, M. G., & Thompson, D. J. (2016). Harvesting energy from the vibration of a passing train using a single-degree-of-freedom oscillator. Mechanical Systems and Signal Processing, 66, 785-792.
[12] Niroomand, M., & Foroughi, H. R. (2016). A rotary electromagnetic microgenerator for energy harvesting from human motions. Journal of Applied Research and Technology. 1-9.
[13] Mitcheson, P. D., Yeatman, E. M., Rao, G. K., Holmes, A. S., & Green, T. C. (2008). Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE, 96(9), 1457-1486.
[14] Ylli, K., D. Hoffmann, A. Willmann, P. Becker, B. Folkmer, and Manoli. "Energy harvesting from human motion: exploiting swing and shock excitations." Smart Materials and Structures 24, no. 2 (2015): 025029.
[15] Renaud, M., Fiorini, P., van Schaijk, R., and Van Hoof, C. (2009). Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator. Smart Materials and Structures, 18(3), 035001.
[16] Peng, K., Chen, B. M., Cheng, G., and Lee, T. H. (2005). Modeling and compensation of nonlinearities and friction in a micro hard disk drive servo system with nonlinear feedback control. Control Systems Technology, IEEE Transactions on, 13(5), 708-721.
[17] Chen, B. M., Lee, T. H., Peng, K., and Venkataramanan, V. (2006). Hard Disk Drive Servo Systems. New York: Springer-Verlag,
[18] Tinoco, H. A. "Beam design for voice coil motors used for energy harvesting purpose with low frequency vibrations: A finite element analysis." International Journal of Modeling, Simulation, and Scientific Computing, 7(3), 1-17.
Vol:15 No:05 2021Vol:15 No:04 2021Vol:15 No:03 2021Vol:15 No:02 2021Vol:15 No:01 2021
Vol:14 No:12 2020Vol:14 No:11 2020Vol:14 No:10 2020Vol:14 No:09 2020Vol:14 No:08 2020Vol:14 No:07 2020Vol:14 No:06 2020Vol:14 No:05 2020Vol:14 No:04 2020Vol:14 No:03 2020Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007