References:
[1] S. A. Silling and E. Askari, “A meshfree method based on the peridynamic model of solid mechanics,” Comput. Struct., vol. 83, no. 17–18, pp. 1526–1535, 2005.
[2] S. A. Silling, “Reformulation of elasticity theory for discontinuities and long-range forces,” J. Mech. Phys. Solids, vol. 48, no. 1, pp. 175–209, 2000.
[3] S. A. Silling, O. Weckner, E. Askari, and F. Bobaru, “Crack nucleation in a peridynamic solid,” Int. J. Fract., vol. 162, no. 1–2, pp. 219–227, 2010.
[4] T. L. Warren, S. A. Silling, A. Askari, O. Weckner, M. A. Epton, and J. Xu, “A non-ordinary state-based peridynamic method to model solid material deformation and fracture,” Int. J. Solids Struct., vol. 46, no. 5, pp. 1186–1195, 2009.
[5] M. Zaccariotto, F. Luongo, G. Sarego, and U. Galvanetto, “Examples of applications of the peridynamic theory to the solution of static equilibrium problems,” Aeronaut. J., vol. 119, no. 1216, pp. 677–700, 2015.
[6] D. Huang, G. Lu, and P. Qiao, “An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis,” Int. J. Mech. Sci., vol. 94–95, pp. 111–122, 2015.
[7] M. S. Breitenfeld, P. H. Geubelle, O. Weckner, and S. A. Silling, “Non-ordinary state-based peridynamic analysis of stationary crack problems,” Comput. Methods Appl. Mech. Eng., vol. 272, pp. 233–250, 2014.
[8] R. W. Macek and S. a. Silling, “Peridynamics via finite element analysis,” Finite Elem. Anal. Des., vol. 43, no. 15, pp. 1169–1178, 2007.
[9] B. Kilic, A. Agwai, and E. Madenci, “Peridynamic theory for progressive damage prediction in center-cracked composite laminates,” Compos. Struct., vol. 90, no. 2, pp. 141–151, 2009.
[10] C. Diyaroglu, E. Oterkus, S. Oterkus, and E. Madenci, “Peridynamics for bending of beams and plates with transverse shear deformation,” Int. J. Solids Struct., vol. 69–70, pp. 152–168, 2015.
[11] E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications. Springer, 2014.
[12] R. C. Hibbeler, Mechanics of Materials Eight Edition, vol. 2. 2001.