Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 31239

Select areas to restrict search in scientific publication database:
Piezoelectric Micro-generator Characterization for Energy Harvesting Application
This paper presents analysis and characterization of a piezoelectric micro-generator for energy harvesting application. A low-cost experimental prototype was designed to operate as piezoelectric micro-generator in the laboratory. An input acceleration of 9.8m/s2 using a sine signal (peak-to-peak voltage: 1V, offset voltage: 0V) at frequencies ranging from 10Hz to 160Hz generated a maximum average power of 432.4μW (linear mass position = 25mm) and an average power of 543.3μW (angular mass position = 35°). These promising results show that the prototype can be considered for low consumption load application as an energy harvesting micro-generator.
Digital Object Identifier (DOI):


[1] X. Zhang, J. Fang, F. Meng e X. Wei, A Novel Self-Powered Wireless Sensor Node Based on Energy Harvesting for Mechanical Vibration Monitoring, Hindawi Publishing Corporation, p. 5, 2014.
[2] H. Liu, C. Quan, C. J. Tay, T. Kobayashi and C. Lee, ”A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibration,” Physics Procedia, vol. 19, pp. 129-133, 2011.
[3] R. Oliquino, S. Islam, H. Eren, Effects of Types of Faults on Generator Vibration Signatures, in: Australasian Universities Power Engineering Conference, 2003: pp. 16.
[4] F. Al-Badour, M. Sunar e L. Cheded, Vibration analysis of rotating machinery using timefrequency analysis and wavelet techniques, Mechanical Systems and Signal Processing, vol. 25, pp. 2083-2101, 2011.
[5] J. K. Sinha e K. Elbhbah, A future possibility of vibration based condition monitoring of rotating machines, Mechanical Systems and Signal Processing, vol. 34, pp. 231-240, 2012.
[6] P. Poddera, A. Amann e S. Roy, A bistable electromagnetic micro-power generator using FR4-based, Sensors and Actuators A: Physical, vol. 227, pp. 39-47, 2015.
[7] R. Moraisa, N. Silva, P.Santos, C. Frias, J. Ferreira, A. Ramos, J. Simesd e J. a. M. Reise, Permanent magnet vibration power generator as an embedded mechanism for smart hip prosthesis, Procedia Engineering, vol. 5, pp. 766-769, 2012.
[8] S. Roundy, E. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. Rabaey, P. Wright e V. Sundararajan, Improving power output for vibration-based energy scavengers, IEEE Pervasive Computing, vol. 4, 2005.
[9] S. Roundy, P. K. Wright e J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Computer Communications, vol. 26, pp. 1131-1144, 2003.
[10] S. Roundy e P. K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Materials and Structures, vol. 3, p. 5, 2004.
[11] B. Pkosawski, P. Krasiski e A. Napieralski, Power processing circuits for wireless sensor nodes utilizing energy harvested from mechanical vibrations, em Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011, Gliwice, Poland, 2011.
[12] C. T. Sherman, P. K. Wright e R. M. White, Validation and testing of a MEMS piezoelectric permanent magnet current sensor with vibration canceling, Sensors and Actuators A: Physical, vol. 248, pp. 206-2013, 2016.
[13] X.-r. Chen, T.-q. Yang, W. Wang e X. Yao, Vibration energy harvesting with a clamped piezoelectric circular diaphragm, Elsevier: Ceramics International, vol. 38, pp. 271 - 274, 2011.
[14] W.-J. Wu, Y.-F. Chen, Y.-Y. Chen, C.-S. Wang e Y.-H. Chen, Smart Wireless Sensor Network Powered by Random Ambient Vibrations, em IEEE International Conference on Systems, Man, Taipei, Taiwan, 2006.
[15] N. Mohajer e M. Mahjoob, Modeling and Electrical Optimization of A Designed Piezoelectric-Based Vibration Energy Harvesting System, em RSI/ISM International Conference on Robotics and Mechatronics, Teharan, 2013.
[16] C. Williams e R. Yates , Analysis of a micro-electric generator for microsystems, Sensors and Actuators A, p. 52, 1996.
[17] F. Lu, H. P. Lee e S. P. Lim, Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications, Smart Materials and Structures, vol. 13, n 1, 2003.
[18] T. Galchev, E. E. Aktakka e K. Najafi, A Piezoelectric Parametric Frequency Increased Generator for Harvesting Low-Frequency Vibrations, Journal of Microelectromechanical Systems, vol. 21, 2012.
[19] M. Niroomand e H. R. Foroughi, A rotary electromagnetic microgenerator for energy harvesting from human motions, Journal of Applied Research and Technology, vol. 14, pp. 269-267, 2016.
Vol:15 No:05 2021Vol:15 No:04 2021Vol:15 No:03 2021Vol:15 No:02 2021Vol:15 No:01 2021
Vol:14 No:12 2020Vol:14 No:11 2020Vol:14 No:10 2020Vol:14 No:09 2020Vol:14 No:08 2020Vol:14 No:07 2020Vol:14 No:06 2020Vol:14 No:05 2020Vol:14 No:04 2020Vol:14 No:03 2020Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007