References:
[1] Mookherjea, S., et al., Localization in silicon nanophotonic slow-light waveguides. Nature Photonics, 2008. 2(2): p. 90-93.
[2] Scullion, M.G., et al., Enhancement of optical forces using slow light in a photonic crystal waveguide. Optica, 2015. 2(9): p. 816-821.
[3] Mendis, R., et al., A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides. Applied physics letters, 2010. 97(13): p. 131106.
[4] Correas-Serrano, D., et al., Graphene-based plasmonic tunable low-pass filters in the terahertz band. IEEE Transactions on Nanotechnology, 2014. 13(6): p. 1145-1153.
[5] Mendis, R., et al., Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity. Applied Physics Letters, 2009. 95(17): p. 171113.
[6] Shibayama, J., et al., Surface plasmon resonance waveguide sensor in the terahertz regime. Journal of Lightwave Technology, 2016. 34(10): p. 2518-2525.
[7] Islam, M., et al., Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors. Scientific Reports, 2017. 7.
[8] McKinney, R.W., et al., Focused terahertz waves generated by a phase velocity gradient in a parallel-plate waveguide. Optics express, 2015. 23(21): p. 27947-27952.
[9] Martin-Cano, D., et al., Waveguided spoof surface plasmons with deep-subwavelength lateral confinement. Optics letters, 2011. 36(23): p. 4635-4637.
[10] Liu, S., O. Mitrofanov, and A. Nahata, Near-field terahertz imaging using sub-wavelength apertures without cutoff. Optics express, 2016. 24(3): p. 2728-2736.
[11] Cao, H. and A. Nahata, Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves. Optics express, 2005. 13(18): p. 7028-7034.
[12] Chen, D. and H. Chen, A novel low-loss Terahertz waveguide: Polymer tube. Optics express, 2010. 18(4): p. 3762-3767.
[13] Chen, L., et al., Controllable multiband terahertz notch filter based on a parallel plate waveguide with a single deep groove. Optics letters, 2014. 39(15): p. 4541-4544.
[14] Khromova, I., A. Andryieuski, and A. Lavrinenko, Ultrasensitive terahertz/infrared waveguide modulators based on multilayer graphene metamaterials. Laser & Photonics Reviews, 2014. 8(6): p. 916-923.
[15] Xiao, B., et al., A terahertz modulator based on graphene plasmonic waveguide. IEEE Photonics Technology Letters, 2015. 27(20): p. 2190-2192.
[16] Baba, T., et al., Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide. Optics express, 2008. 16(12): p. 9245-9253.
[17] Hao, R., et al., Improved slow light capacity in graphene-based waveguide. Scientific reports, 2015. 5.
[18] Hu, J., S. Xie, and Y. Zhang, Micromachined terahertz rectangular waveguide bandpass filter on silicon-substrate. IEEE microwave and wireless components letters, 2012. 22(12): p. 636-638.
[19] Islam, M., et al., Terahertz guided mode properties in an internally corrugated plasmonic waveguide. Journal of Applied Physics, 2017. 122(5): p. 053105.
[20] Kleine-Ostmann, T. and T. Nagatsuma, A review on terahertz communications research. Journal of Infrared, Millimeter, and Terahertz Waves, 2011. 32(2): p. 143-171.
[21] Song, S., et al., Narrow-linewidth and high-transmission terahertz bandpass filtering by metallic gratings. IEEE Transactions on Terahertz Science and Technology, 2015. 5(1): p. 131-136.
[22] Tao, J., et al., Tunable subwavelength terahertz plasmonic stub waveguide filters. IEEE Transactions on Nanotechnology, 2013. 12(6): p. 1191-1197.
[23] Williams, C.R., et al., Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photonics, 2008. 2(3): p. 175-179.
[24] Gagan, K., et al., Planar plasmonic terahertz waveguides based on periodically corrugated metal films. New Journal of Physics, 2011. 13(3): p. 033024.
[25] Zhu, W., A. Agrawal, and A. Nahata, Planar plasmonic terahertz guided-wave devices. Optics express, 2008. 16(9): p. 6216-6226.
[26] Pandey, S., B. Gupta, and A. Nahata, Terahertz plasmonic waveguides created via 3D printing. Optics express, 2013. 21(21): p. 24422-24430.
[27] Kumar, G., et al., Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars. New Journal of Physics, 2013. 15(8): p. 085031.
[28] Islam, M. and G. Kumar, Terahertz surface plasmons propagation through periodically tilted pillars and control on directional properties. Journal of Physics D: Applied Physics, 2016. 49(43): p. 435104.
[29] Wood, J. J., et al., Spoof plasmon polaritons in slanted geometries. Physical Review B, 2012. 85(7): p. 075441.
[30] Li, S., et al., Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves. Optics express, 2013. 21(6): p. 7041-7049.
[31] Nagai, M., et al., Achromatic wave plate in THz frequency region based on parallel metal plate waveguides with a pillar array. Optics express, 2015. 23(4): p. 4641-4649.
[32] Mittendorff, M., S. Li, and T.E. Murphy, Graphene-based waveguide-integrated terahertz modulator. ACS Photonics, 2017. 4(2): p. 316-321.