Postbuckling Analysis of End Supported Rods under Self-Weight Using Intrinsic Coordinate Finite Elements
References:
[1] A. E. H. Love, Treatise on the mathematical theory of elasticity. Cambridge University Press: London, 1944.
[2] S. P. Timoshenko, J. N. Goodier, Theory of elasticity. McGraw-Hill: Singapore, 1982.
[3] S. S. Antman, Nonlinear problems of elasticity. Applied Mathematical Sciences 107. Springer Verlag. New York. USA, 1991.
[4] C. M. Wang, C. Y. Wang, J.N. Reddy, Exact solutions for buckling of structural members. CRC Press: boca Raton. Florida, 2005.
[5] D. Bigoni, Extremely deformable structures. Ed. Springer: Wien-New York, 2015.
[6] R. Haftka, W. Nachbar, “Post-buckling analysis of an elastically-restrained column,” Int. J. Solids Stuct., vol. 6, no. 11, pp. 1433-1449, Nov. 1970.
[7] C. M. Wang, K. K. Ang “Buckling capacities of braced heavy columns under an axial load,” Comput. Struc., vol. 28, no. 5, pp. 563-571, 1988.
[8] Y. H. Chai, C. M. Wang, “An application of differential transformation to stability analysis of heavy columns,” Int. J. Struc. Stab. Dyn., vol. 6, no. 3, pp. 317-332, 2006.
[9] S. B. Coskun, M. T. Atay, “Determination of critical buckling load for elastic columns of constant and variable cross-sections using variational iteration method,” Comput. Math. Appl., vol. 58, no. 11-12, pp. 2260-2266, Dec. 2009.
[10] D. J. Wei, S. X. Yan, Z. P. Zhang, X. F. Li, “Critical load for buckling of non-prismatic columns under self-weight and tip force,” Mech. Res. Commun., vol. 37, no. 6, pp. 554-558, Sep. 2010.
[11] Y. Huang, Q. Z. Luo, “A simple method to determine the critical buckling loads for axially inhomogeneous beams with elastic restraint,” Comput. Math. Appl., vol. 61, no. 9, pp. 2510-2517, May 2011.
[12] W. H. Duan, C. M. Wang, “Exact solution for buckling of columns including self-weight,” J. Eng. Mech., vol. 134, no. 1, pp. 116-119, Jan. 2008.
[13] B. Han, F. Li, C. Ni, Q. Zhang, C. Chen, T. Lu, “Stability and initial post-buckling of a standing sandwich beam under terminal force and self-weight,” Arch. Appl. Mech., vol. 86, no. 6, pp. 1063-1082, June 2016.
[14] C. Y. Wang, “Post-buckling of a clamped-simply supported elastic,” Int. J. Non-Linear Mech., vol. 32, no. 6, pp. 1115-1122, Nov. 1997.
[15] M. A. Vaz, D. F. C. Silva, “Post-buckling analysis of slender elastic rods subjected to terminal forces,” Int. J. Non-Linear Mech., vol. 38, no. 4, pp. 483-492, June 2003.
[16] L. N. Virgin, R. H. Plaut, “Postbuckling and vibration of linearly elastic and softening columns under self-weight,” Int. J. Solids Struct., vol. 41, no. 18-19, pp. 4989-5001, Sep. 2004.
[17] M. A. Vaz, G. H. W. Mascaro, “Post-buckling analysis of slender elastic vertical rods subjected to terminal forces and self-weight,” Int. J. Non-Linear Mech., vol. 40, no. 7, pp. 1049-1056, Sep. 2005.
[18] S. Li, Y. Zhou, “Post-buckling of a hinged-fixed beam under uniformly distributed follower forces,” Mech. Res. Commun., vol. 32, no. 4, pp. 359-367, July-Aug. 2005.
[19] J. Liu, Y. Mei, X. Dong “Post-buckling behavior of a double-hinged rod under self-weight,” Acta Mech. Solida Sinica., vol. 26, no. 2, pp. 197-204, Apr. 2013.
[20] B. K. Lee, S. J. Oh, “Elastica and buckling of simple tapered columns with constant volume,” Int. J. Non-Linear Mech., vol. 37, no. 18, pp. 2507-2518, May. 2000.
[21] K. Lee, “Post-buckling of uniform cantilever column under a combined load,” Int. J. Non-Linear Mech., vol. 36, no. 5, pp. 813-816, July 2001.
[22] V. V. Kuznetsov, S. V. Levyakov “Complete solution of the stability problem for elastica of Euler’s column.” Int. J. Non-Linear Mech., vol. 37, no.6, pp. 1003-1009, Sep. 2002.
[23] O. Sepahi, M. R. Forouzan, P. Malekzadeh “Differential quadrature application in post-buckling analysis of a hinged-fixed elastica under terminal forces and self-weight,” J. Mech. Sci. Technol., vol. 24, no. 1, pp. 331-336, Jan. 2010.
[24] C. Y. Wang, “Large post-buckling of heavy tapered elastica cantilevers and its asymptotic analysis,” Arch. Mech., vol. 64, no. 2, pp. 207-220, Jan. 2012.
[25] K. Cai, D. Y. Gao, Q. H. Qin, “Postbuckling analysis of a nonlinear beam with axial functionally graded material,” J. Eng. Math., vol. 88, no. 1, pp. 121-136, Oct. 2014.
[26] T. Huang, D. W. Dareing, “Buckling and lateral vibration of drill pipe,” J. Eng. Ind., vol. 90, no. 4, pp. 613-619, Nov. 1968.
[27] T. Huang, D. W. Dareing, “Buckling and frequencies of long vertical pipes,” J. Eng. Mech. Div., vol. 95, no. 1, pp. 167-182, 1969.
[28] A. Lubinski, “A study of the buckling of rotary drilling stings,” API Drilling and Production Practice., pp. 178-214, 1950.
[29] T. Kokkinis, M. M. Bernitsas, “Post-buckling analysis of heavy columns with application to marine risers,” SNAME J. Ship Res., vol. 29, no. 3, pp. 162-169, Sep. 1985.
[30] M. A. Vaz, M. H. Patel, “Analysis of drill strings in vertical and deviated holes using the Galerkin technique,” Eng. Struct. vol. 17, no. 6, pp. 437-442, July 1995.
[31] M. A. Vaz, M. H. Patel, “Initial post-buckling of submerged slender vertical structures subjected to distributed axial tension,” Appl. Ocean Res. vol. 20, no. 6, pp. 325-335, Dec. 1998.
[32] H. L. Langhaar, Energy methods in applied mechanics. New York: John Wiley & Sons, 1962.