Prioritizing the Most Important Information from Contractors’ BIM Handover for Firefighters’ Responsibilities
References:
[1] Averill, J., Holmberg, D., Vinh, A., & Davis, W. (2009). Building Information Exchange for First Responders Workshop. Proceedings NIST Technical Note.
[2] Boguslawski, P., Mahdjoubi, L., Zverovich, V., & Fadli, F. (2016). Automated construction of variable density navigable networks in a 3D indoor environment for emergency response. Automation in Construction, 72, 115-128.
[3] Brown, G., Nagel, C., Zlatanova, S., & Kolbe, T. H. (2013). Modelling 3D topographic space against indoor navigation requirements. In Progress and new trends in 3D geoinformation sciences (pp. 1-22). Springer, Berlin, Heidelberg.
[4] Burton, G. (2007). How the United States is reducing its firefighter fatalities. Australian Journal of Emergency Management, The, 22(2), 37.
[5] Chen, L.C., Wu, C.H., Shen, T.S., & Chou, C.C. (2014). The application of geometric network models and building information models in geospatial environments for fire-fighting simulations. Comput. Environ. Urban Syst. 45, 1–12.
[6] Choi, J., Choi, J., & Kim, I. (2014). Development of BIM-based evacuation regulation checking system for high-rise and complex buildings. Automation in Construction, 46, 38-49.
[7] NCSS Statistical Software, Chapter 401, (1998). Retrieved from https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Correlation_Matrix.pdf.
[8] Crotty, M. (1998). The foundations of social research: Meaning and perspective in the research process. Sage.
[9] Evarts, B. (2019). Fire Loss in the United States During 2018 (p. 11). Quincy, MA: National Fire Protection Association.
[10] Ezekwem, K. C. (2016). Environmental Information Modeling: An Integration of Building Information Modeling and Geographic Information Systems for Lean and Green Developments (Doctoral dissertation, North Dakota State University).
[11] Gao, X., & Chen, Y. (2016). Research on BIM Technology in Construction Safety & Emergency Management, Advances in Engineering Research. 112, proceeding in 4th International Conference on Renewable Energy and Environnemental Technology (ICREET).
[12] Hardin, B., & McCool, D. (2015). BIM and construction management: proven tools, methods, and workflows. John Wiley & Sons. p 354
[13] Headquarters, Firefighting and Rescue Procedures in Theaters of Operations. (1971). Department of the Army, TM, 5-315. Washington D.C.
[14] Holmberg, D.G., Raymond, M.A., & Averill, J. (2013). Delivering building intelligence to first responders. Gaithersburg. National Institute of Standards and Technology (NIST).
[15] Hossain, M. A., & Yeoh, J. K. W. (2018, June). BIM for Existing Buildings: Potential Opportunities and Barriers. In IOP Conference Series: Materials Science and Engineering (Vol. 371, No. 1, p. 012051). IOP Publishing.
[16] Isikdag, U., Underwood, J., Aouad, G., & Trodd, N. (2007). Investigating the role of building information models as a part of an integrated data layer: a fire response management case. Architectural Engineering and Design Management, 3(2), 124-142.
[17] Isikdag, U., Underwood, J., & Aouad, G. (2008). An investigation into the applicability of building information models in a geospatial environment in support of site selection and fire response management processes. Advanced Engineering Informatics, 22 (4). 504–519.
[18] Jones, W. W., Davis, W. D., Evans, D. D., Holmberg, D. G., Bushby, S. T., & Reed, K. A. (2005). Workshop to define information needed by emergency responders during building emergencies (No. NIST Interagency/Internal Report (NISTIR)-7193).
[19] Li, N., Yang, Z., Ghahramani, A., Becerik-Gerber, B., & Soibelman, L. (2014). Situational awareness for supporting building fire emergency response: Information needs, information sources, and implementation requirements. Fire safety journal, 63, 17-28.
[20] Li, N., Becerik-Gerber, B., Soibelman, L., & Krishnamachari, B. (2015). Comparative assessment of an indoor localization framework for building an emergency response. Automation in Construction, 57, 42-54.
[21] Mahdaviparsa A., McCuen T. (2019). Comparison Between Current Methods of Indoor Network Analysis for Emergency Response Through BIM/CAD-GIS Integration. In: Mutis I., Hartmann T. (eds) Advances in Informatics and Computing in Civil and Construction Engineering. Springer, Cham.
[22] NBIMS, (2006). National BIM Standard Purpose, US National Institute of Building Sciences Facilities Information Council BIM Committee.
[23] OSHA, Occupational Safety and Health Standards, Title 29 of the Code of Federal Regulations (CFR), 2012, 1910.155(c) (28).
[24] Pavan, A., Bolognesi, C., Guzzetti, F., Sattanino, E., Pozzoli, E., D’Abrosio, L., Mirarchi, C., & Mancini, M (2020). BIM Digital Platform for First Aid: Firefighters, Police, Red Cross. In: Daniotti B., Gianinetto M., Della Torre S. (eds) Digital Transformation of the Design, Construction and Management Processes of the Built Environment. Research for Development. Springer, Cham.
[25] Raosoft, EZSurvey, (1996). Retrieved from http://www.raosoft.com/samplesize.html
[26] Rensink, R. A. (2002). Internal vs. external information in visual perception. In Proceedings of the 2nd international symposium on Smart graphics (pp. 63-70). ACM.
[27] Ruppel, U., Abolghasemzadeh, P., & Stuebbe, K.M. (2010). BIM-based immersive indoor graph networks for emergency situations in buildings. Proceedings of the International Conference on Computing in Civil Engineering and Building Engineering. 65–72.
[28] Shino, G. K. (2013). BIM and fire protection engineering: by including all life safety systems in the BIM rendering, engineers improve the building's model as a whole. Consulting Specifying Engineer.
[29] Soegaard, M., & Dam, R. F. (2013). The encyclopedia of human-computer interaction. The Encyclopedia of Human-Computer Interaction.
[30] Tashakkori, H., Rajabifard, A., & Kalantari, M. (2015). A new 3D indoor/outdoor spatial model for indoor emergency response facilitation. Building and Environment, 89, 170-182.
[31] Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International journal of medical education, 2, 53.
[32] Underwood, J., Aouad, G. F., Isikdag, U., & Trodd, N. M. (2007). Investigating the applicability of IFC in a geospatial environment in order to facilitate the fire response management process.
[33] USFA. (2016). Fire-Related Firefighter Injuries Reported to the National Fire Incident Reporting System (2012-2014). Volume 17, Issue 6 (2016).
[34] Vandecasteele, F., Merci, B., & Verstockt, S. (2017). Fireground location understanding by semantic linking of visual objects and building information models. Fire Safety. 91, 1026-1034.
[35] Wu, B., Zhang, S. (2016). Integration of GIS and BIM for indoor geovisual analytics. In XXIII ISPRS Congress, Commission II ; Halounova, L., Li, S., Šafář, V., Tomková, M., Rapant, P., Brázdil, K., Shi, W., Anton, F., Liu, Y., Stein, A., Eds. 455-458.
[36] Zhang, Z., Zhou, Y., Cui, J., & Meng, F. (2011, June). Modelling the information flows during emergency response. In Geoinformatics, 2011 19th International Conference on (pp. 1-5). IEEE.